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Newton's law

Newton’s law: F = ma with acceleration a = X, mass m, and force F.

Multi-particle system:
xi(t) = vi(t), vi(t) = F(xi(t))/mj, x(t) e RY, v(t) e R".
The ith particle is described by position x;, velocity v;, and mass m;.
For practical systems N is extremely large (order of Avogadro constant ~ 10%3).

» Even if we could track the position of each particle this is usually not interesting.

» Macroscopic quantities (density, momentum density, ...) much more important.



Kinetic description

We introduce a particle-density f(t, x, v) such that

XD %]
/ / f(t,x,v)d(x,v) = number of particles with x € [x1,x2] and v € [vq, v2].
X1 Vi
Number of particles is conserved

Oef(t,x,v)+ Vi - (f(t,x, v) [ : ]) =0.

Acceleration a = F/m determined by Newton's law. Yields kinetic equation

F
Oef(t,x,v) + v - Vi f(t,x,v)+ " V. f(t,x,v)=0.

Often F self-consistencly couples to f (i.e. F depends on f).



Kinetic description

The force field F is not very useful to model collisions. Boltzmann equation:

F
8tf—|—vvxf+gvvf:

First order hyperbolic equation with
Transport: f(t,x,v)=f(0,x — vt,v)

Acceleration: f(t,x,v)=f(0,x,v—tF/m)

usually only acts in v.

For collisionless problems (i.e. C(f) = 0) particles travel along the characteristics
given by Newton’s law.

Fluid models, such as the Euler equation and Navier—Stokes equation, can be derived
by assuming f(t,x,v) o< pexp(—(v — u)?/(2T)), i.e. thermodynamic equilibrium.



Vlasov—Poisson equation

Interest from applications such as Tokamak devices (fusion energy), astrophysical
plasmas (space weather, magnetosphere, star formation), radiative transfer, ion
thrusters, laser plasma interaction, etc.

» Many large scale codes: GYSELALD, Vlasiator, ...

In a plasma electromagnetic effects are important: F = gE/m.

Vlasov equation in dimensionless form
Ohf +v-Vif—E-V,f=0

coupled to a Poisson problem (Gauss's law)

E——Vé  with —A(bzl—/fdv.

Vlasov—Maxwell equations include magnetic effects.



Landau damping

Initial value

f(0,x,v) = (1 + acos(kx)) , dy, number of dimensions in the v-direction.

For o« = 0 we have an

Quantity of interest is the electric energy given by %f E? dx.

» Exponential decay is not expected for a hyperbolic problem.

First described by Landau in 1946 using . \(

linearization. - YT\(

Fields Medal 2010 (Cédric Villani) for w YYYWYYWW

proving Landau damping and convergence “ WY\(YY
to equilibrium (for o small). 104 - - - - - !

0

L. Landau. J. Phys. (USSR) 10 (1946).
C. Mouhot, C. Villani. Acta Math. 207:1 (2011).



Nonlinear Landau damping

To study kinetic dynamics (in almost all situations) requires numerical simulation.
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Numerical challenges

The phase space is up to six-dimensional.
» n =50 250 GB memory (workstation)
>
» n =200 1024 TB memory (largest supercomputer)

Small scale structures force a sufficiently fine space discretization.

We need a numerical method
» for which stability is not dictated by vr < h
» that does not introduce additional memory requirements
» that is scalable to large HPC systems
>

that does not introduce too much numerical diffusion



High-performance computing

To obtain results for five or six-dimensional problems requires the largest
supercomputers currently available (perhaps more than that).

Simulation using ~ 1500 GPUs and 7231443 grid points.

Total —@— Communication —@—
JUWELS Booster: Advection —@— E field

» 2 x 24 AMD EPYC 7402
cores and 4x NVIDIA A100
GPUs per node.

» Total of 150 TB of GPU
memory.

» 4x Mellanox HDR200
InfiniBand ConnectX 6 (200
Gbit/s each).

time per step in seconds

1 4 16 64 256 1024
number of GPUs



The wave perspective

Summary of elementary plasma waves
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Landau damping is an example of wave-particle interaction.

» Particles with matching velocity interact strongly with an electromagnetic

wave.

https://en.wikipedia.org/wiki/Waves_in_plasmas
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Dimension reduction for the Vlasov equation

Fundamental problem of Eulerian Vlasov solvers is that effort scales as O(n%+dv).
» Curse of dimensionality

Particle methods have been employed 1072
extensively.

» Only x is discretized.

» Particles push and field solves are o FHiv=2INZ20 -

alternated. 10°| —PICiN,_ =102400, § °
__ FH;v=0; NH=100

Sparse grids
» Have problems resolving Gaussians.

» regularity is an issue as |[0]f(t,-,-))| o< t™.

E. Camporeale et al., 198, Comput. Phys. Commun., 2016.
K. Kormann, E. Sonnendriicker, Sparse Grids and Applications. 2016.



Dynamical low-rank approximation




Singular value decomposition

Singular value decomposition for a matrix A; = g(x;, vj) is given by
A=VSWT e R™m

with V e R™" S e R™" W € R™*", and r the rank of A.

Low-rank approximation

g(x,v) ~ Z Xi(x)SijVj(v).
ij
Orthogonality constraints: (Xj, Xj)x = dj5, (Vi, Vi), = dj;.

Why do we think that low-rank works any better?



Dynamical low-rank approximation

Traditional approach

K. Kormann, SIAM J. Sci. Comput., 37(4), 2015.
O. Koch, C. Lubich. SIAM J. Matrix Anal. Appl., 29(2), 2007.



Dynamical low-rank approximation

Traditional approach
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Discretize first.
Then low-rank.

Low-rank first.
Then discretize.

K. Kormann, SIAM J. Sci. Comput., 37(4), 2015.
O. Koch, C. Lubich. SIAM J. Matrix Anal. Appl., 29(2), 2007.



Dynamical low-rank approximation

Dynamical low-rank approximation

f(t,x,v) = ZX;(t,X)S;j(t)\/j(t, v).

Low-rank functions (with fixed r) form a manifold with functions in the tangent space

represented as

iy

This representation is not unique. For example,
X,':X,', S,JZO and X,':O, SU:SIJ

gives the same vector in the tangent space.



Gauge conditions

We impose the Gauge conditions <X,-,XJ->X =0 and (V, VJ>V =0.
Equation for S

(X, Vi, ) :Z<ka,,xsu A+ XiSiVi+ XiSi Vi)

_ZX/“ X 'J Vl? J +ZXI<7 XSij<Vlv Vj>v+Z<Xk7X

ij ij

= Skl
Equation for X

(Vi F) = S (VL XiSi Vi + XiS5 Vi + XiSi Vi)
ij

= ZX,-SUW/, Vidy + D XiSi(Vi, Vidy + 3 XiSi(Vi, Vi)

=D XiSi+Y_ XS

)< Si(Vi, Vi)y



Dynamical low-rank approximation

Equations of motion

0:S; = (X;Vj, RHS), ODE
Z Sij(0:Xi) = (V, ) — ZXi(atsij), x dependent PDE
> Si(0: V) = (X, )= (0:Si) V. v dependent PDE
J J

In principle we can substitute
= —v-Vxf+ E(f)-V,f.

But
» The equations couple S, X, and V;

» To obtain equations in X; and V; we have to invert S and S™.



Robustness

Back to the SVD

A~ VSWT.
Approximation by truncation
mp 00 0 O
0 puw 0 0 O pr 00
S= 0 0 M3 0 0 ~ 0 2 0
0 0 O wm O 0 0 wpus3
0 0 0 0 wus

Error vs condition number
» If 14 is large than the error is large.
» If u3 is small than inverting S is ill-conditioned.



Projector splitting integrator

Vlasov—Poisson equation constrained to the low-rank manifold
o+f = P(f) = P(f)(—v-Vxf + E(f)-V,f),

where P(f) is the orthogonal projector onto the tangent space.

We have

P(f) = Z (8tX,S,JVJ + X,&tS,J\/J + X,-S,-J-8t \/J)
ij
= Y (9:(XiSy) Vs = Xi0:55V; + Xi0:(S; V)))
ij

=D (V5 RHS)V; = > Xi(XiVj, RHS) o Vj + Y Xi(Xi, RHS),
J ij i



Projector splitting integrator

We can write
P(f)g = Pyg — PyPxg + Pxs,

where Py and Py; are the orthogonal projectors on X = span{X;: i =1...r} and
V =span{V;:j=1...r}.

This suggests a splitting.

C. Lubich and I.V. Oseledets. BIT Numer. Math. 54(1) 2014.



Splitting

We consider
0

Oru(t) = Fi(u(t)) + Fa(u(t)),  u(0) = v,
where F; and F; could describe different physics, different timescales, different

coordinate axis, ...

. F F F
urtl = R o oL (um) (Lie) U™ = g © PR © Ppy (") (Strang)
Step: At/2

du = Fy(u)

untl

S

=nlp =
— 7130

(M
(n)er

O = Fi(u)

du = Fy(u)

Fundamental idea of splitting is that only subflows have to be solved.



K step

Our goal is to solve
Of = P (—v -V + E(f)-V,f).

We rewrite the solution using K; as follows

f(t,x,v) = Z Ki(t,x)Vj(t,v), with  Kj(t,x) = ZX;(t,x)SU(t).

This yields

Zé)t tv+ZK (t,x)0: Vi(t,v)

J
= Z<Vl(t’ )y Vi —v e Vi f(tx,v) + E(F)(t, x) - Vo f(t, x,v)) Vj(t, v).



K step

The solution is given by V(t,v) = V;(0, v) and

OtKj(t,x) = (Vj, v i v - Vi f(t, x, v) + E(F)(t, x) - Vo f(t, x,v)),
==Y (Vi) - VieKi(t,x) + Y E- (V;V, Vi) Ki(t, x)
I I

For the first subflow of the projector splitting algorithm we thus obtain

OrK;(t,x) = — Z cj -V Ki(t,x) + Z cf, -E(K)(t, x)K(t, x),
! /

The coefficients are determined as follows (V = V9)
o = / WOVPdy, &= / VO(V, V) dv.
Ja, Q,

Do not neglect the cost of computing the coefficients.



K step

The equation is formulated with K and V' (neither X nor S are explicitly involved).

To proceed with the next step in the algorithm we have to obtain X and S.
» Why is this approach then advantageous?

The X and S are recovered from K by a QR decomposition as

Ki=)_XiS;
i

Well defined even for singular K = [Ki, ..., K] and gives automatically the (almost
correct) orthogonality relation for the X;.

» Result is a robust approximation even if the rank r is chosen too large.

Note that S is not necessarily diagonal.



S step

Our goal is to solve

Oef = — (—v - Vif + E(F) - V).

The solution is Xi(t,x) = Xi(0,x), Vj(t,v) = V;(0,v), and
9:Sij = (XPVP, (x,v) = (v Vi — E(S)(t,x) V)Zxk )Su(t

=3 (- di & - RIE(S(O)]) Sw(®)
kl

with
diﬂE] :/Q XilEX/}an diy —/ Xl \Y Xk)

The S step integrates backward in time.

VP(V)),,



Electric field (S step)

The electric field E(S(t)) is computed from

—Ap=1- Zx,l(x)s,-j(t)/ VP dv, E=-Vé¢.
ij

In practice we usually approximate E by E” (first order) or E"*1/2 (second order).

» E"t1/2 has to be approximated (to first order) in an actual implementation.



L step

Our goal is to solve

We define
f(t,x,v) ZX (t,x) with  Li(t,v) = ZSU(t)\/j(t, v).

J
The solution is X;(t,x) = X;(0, x) and
deLilt, v):<XJ.17x»—>( v V. + E(L)(t, Zkak (t, V)>

_de[E €N - Vo L(t,v) — Z(d,?k.v)Lk(t, v).
k

Then S and V are recovered from L by a QR decomposition.



Dynamical low-rank algorithm

First order Lie splitting

1. Solve 0:K; = — 3%, cjl, VK + 3, (:ﬁ - E(K)K; with initial value Z,-X,-OS,-(J)- up to
time At to obtain Kjl.

2. Perform a QR decomposition of Kj1 to obtain X} and S,}
3. Solve 95 = Y (<} - o3 ~
obtain S7.

4. Solve 0¢Lj = Y ) dj - VL — 32 (d - v)Li equation with initial value > 55\/1-0 up
to time At to obtain L}.

J, ) Sy with initial value 51 up to time At to

5. Perform a QR decomposition of L} to obtain \/j1 and 53

Spectral and semi-Lagrangian methods can still be employed.

L.E., C. Lubich, SIAM J. Sci. Comput. 40(5), 2018.



Computational complexity

Computational complexity: O(r?n9) instead of O(n%+%).
» Limited by computation of the coefficients and solution of evolution equations.

Memory usage: O(rn?) instead of O(n%F).
» Limited by storage of X; and V.

Coefficients: cﬁ :/ v\/j0 VP dv Storage: O(r?) Effort: O(r?n®)

v

Integration: OtKj = ... Storage: O(rn%) Effort: O(r?n%)

X

d = max(dx, dv).



Implementation

Discretized system
f=XSVT

with
fri = f(t, xk, v1), Xii = Xi(t, xk), Vij = \/j(t’ vi)-

In matrix form

Xu(t,xa) oo Xe(t,x1) Vi(t,v) -+ Vi(t, v)
X(t) = : : . V()= : :
Xi(t,xn) -+ Xe(t,xn) Vi(t,vm) -+ Vi(t,vm)

K step (one-dimensional case)
DeK = —Ag, K(c1)T + diag(E")K(c?) T,

where Ay, is the discretization of the spatial derivative.



Linear Landau damping

Low-rank approximation with 256 grid points in each direction.
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Plasma echo

Plasma echo with 512 x 4096 grid points.
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Two-stream instability

Low-rank approximation with 512 grid points per direction (r = 10 left, r = 20 right).
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Two-stream instability

Time evolution of the electric energy.
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Why does dynamical low-rank work?




Linear regime

Why does low-rank work so well in the linear regime?

We consider a small perturbation around the equilibrium

f(t,x,v) = +fA(t,x,v),  E(t,x) =0+ EW(t,x).

This results in the linearized Vlasov equation
Bef M (t,x,v) + v - Vo fD(t,x,v) + ED(x) -V, =0,

where we have dropped the second order term E(1)(x) -V, f()(v).

Fourier transforme (in x) the Vlasov—Poisson equation
Ot ()(t V) +iv - kf( )( )—i—E,El)-VV =0,
ED = -5 [ Yt v)dv, k0.



Linear regime

Now let us assume

0.k

NE

f(0,x,v) = +

x
I

1
E.g. Landau damping with m = 2 (rank 1).

Since the linear problem does not excite any new Fourier modes

f(t,x,v) = Z zA‘k( t, v)elkix
k=1

which is at most rank m + 1.

Our low-rank algorithm is more general than the previous analysis suggests (i.e. in
general Xi(t, x) # ™).
» The low-rank algorithm captures saturation perfectly.

L.E., A. Ostermann, C. Piazzola, J. Comput. Phys. 403, 2020.



Smoothness

The low-rank algorithm is able to resolve filamentation. Consider

2

Otf(t,x,v) + v - Vif(t,x,v) =0, f(0,x,v) = efxe=v",

Then

ik(x— 2 Lo 9
f(t,X, V):e/k(x vt)e v :e/kxe /kvte Ve

This is still rank 1.

Thus, smoothness in v is not necessary for low-rank approximations.
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