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Physical structure of the Vlasov equation



Hamiltonian systems

Reminder: In a Hamiltonian system the time evolution of a quantity F (p, q) can be
written as

∂tF = {F ,H}

with Hamiltonian H and the symplectic Poisson bracket

{F ,G} = ∇qF · ∇pG −∇pF · ∇qG .

Since ∂tH = {H,H} = 0 we follow that the Hamiltonian, i.e. the energy of the
system, is conserved.

Every quantity C such that {C ,H} = 0 is conserved.

A non-canonical Hamiltonian system admits a Poisson bracket [·, ·] (not necessarily
the symplectic bracket above) that satisfies Anticommutativity, Bilinearity, Leibniz’s
rule, and the Jacobi identity.



Non-canonical Hamiltonian systems

Example: The generalized Lotka–Volterra model

u̇ = u(v + w), v̇ = v(u − w + 1), ẇ = w(u + v + 1)

is a non-canonical Hamiltonian system with

H(u, v) = −u+v+w+ln v−ln w and [F ,G ] = (∇uvw F )T

 0 uv uw
−uv 0 −vw
−uw vw 0


︸ ︷︷ ︸

B

∇uvw G

C is a Casimir invariant if {C ,F} = 0 holds for all F .
I We call the Poisson bracket degenerate.

Example: For the Lotka–Volterra model C(u, v) = − ln u − ln v + ln w is a Casimir
invariant as (∇uvw C)T B = 0.



Vlasov–Maxwell equations

Vlasov equation
∂t f + v · ∇x f − (E + v × B) · ∇v f = 0

coupled to Maxwell’s equations

∂tE = c2∇x × B − j , ∂tB = −∇x × E ,

where j =
∫

vf dv .

There are also constraints (automatically satisfied in the continuous case)

∇ · B = 0, ∇ · E = 1− ρ



Hamiltonian structure

The Vlasov–Maxwell equations have a non-canonical Hamiltonian structure.

H = 1
2

∫
|E |2 dx + c2

2

∫
|B|2 dx + 1

2

∫
v2f d(x , v)

=: HE + HB + Hf .

Evolution of F
∂tF = [F ,H] = [F ,HE ] + [F ,HB] + [F ,Hf ]

with a highly non-canonical Poisson bracket.

We have an infinite number of Casimir invariants as any C(f ) satisfies [C ,G ] = 0
for arbitrary G .
I ‖f ‖2 (in fact, any Lp norm)
I Entropy −

∫
Ω f log f d(x , v).



Accuracy of Vlasov simulation

Performance is often checked by using a work-precision diagram.
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Two-stream instability
Vlasov–Poisson equation with 1284 degrees of freedom.



Two-stream instability
Vlasov–Poisson equation with 1284 degrees of freedom.



Two-stream instability
Vlasov–Poisson equation with 324 degrees of freedom.
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The method with better accuracy (spline) is much worse in practice.



Discussion

We are in the asymptotic regime if classic convergence theory applies. That is,

error ≤ C ((∆t)p + (∆x)q) .

gives a tight bound of the error.

Why is this not the case here? Consider

∂t f (t, x , v) + v∂x f (t, x , v) = 0, f (0, x , v) = eikxe−v2/2

which has the solution
f (t, x , v) = eiktv eikxe−v2/2.

Small scale structures (e.g. filamentation, turbulence, ...) can not be resolved.
I All methods are necessarily inaccurate.
I Often we can still get good physics out of those methods.



Two-stream instability
L2 norm as a measure of numerical diffusion.
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Invariants more important than accuracy.
I Numerical methods should be designed with this in mind.



Dynamical low-rank



Galerkin condition

Orthogonal projection

Find ∂t f = g ∈ TfM such that ‖g − RHS‖ is minimal.

That is, g = P(f )RHS.

Galerkin condition

Find ∂t f such that 〈ν, ∂t f 〉 = 〈ν,RHS〉 ∀ν ∈ TfM.

For the Schrödinger equation implies symplecticity, energy, and norm conservation.
I But the situation here is very different.



L2 conservation

Galerkin condition implies L2 norm conservation

∂t‖f ‖2 = 2〈f , ∂t f 〉xv = 2〈f ,RHS〉xv = 0

since f ∈ TfM.

But wait, why do we have 〈f ,RHS〉xv = 0?

This is how we (directly) prove L2 conservation for the underlying model

∂t‖f ‖2 = 2〈f ,RHS〉xv =
∫
∇x · (vf 2)−∇v · (Ef 2) d(x , v) = 0.

The analytic argument carries over. This will be an important technique!



Mass conservation

From
∂t f +∇x · (vf )−∇v · (Ef ) = 0

we follow by integrating in v

∂t

∫
f dx +∇x ·

∫
vf dv = 0,

which is more commonly written as

∂tρ+∇ · j = 0, ρ =
∫

f dv , j =
∫

vf dv .

Integrating in x we get
M =

∫
f d(x , v) = const.

That is, conservation of mass.



Momentum or charge conservation

From
∂t(vf ) +∇x · ((v ⊗ v)f )− v∇v · (Ef ) = 0

we follow by integrating in v

∂t j +∇x · σ = −
∫

Ef dv = Eρ, σ =
∫

(v ⊗ v)f dv .

Since
E (1− ρ) = ∇ · (E ⊗ E − 1

2E 2)

and
∫

E dx = 0 we obtain

P =
∫

vf d(x , v) = const,

That is, conservation of momentum.



Energy conservation

We already know that energy (i.e. the Hamiltonian) is conserved

H = 1
2

∫
v2f d(x , v) + 1

2

∫
E 2 dx .

Similar to mass and momentum there is also an associated local conservation law

∂te +∇x · Q = E · (∂tE − j), e = 1
2

∫
v2f dv + 1

2E 2, Q = 1
2

∫
vv2f dv .



Dynamical low-rank approximation

The dynamical low-rank approximation finds the, in some sense, best L2

approximation.
I No guarantee that mass, momentum, or energy is conserved.

Linear Landau damping (left) and two-stream instability (right).
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This failure is in stark contrast to Eulerian and particle methods.



Literature

[Z. Peng, R. McClarren, M. Frank, J. Comput. Phys., 421 (2020)]
I Rescale solution to obtain mass conservation.
I Global mass conservation only.
I Not extensible to other invariants.

[Z. Peng, and R.G. McClarren. arXiv:2011.06072]
I Couple moments with low-rank approximation of g , where f = M + g .
I Needs to enforce

∫
g d(x , v) = 0.

I Global invariants only.

[L. Einkemmer, C. Lubich. SIAM J. Sci. Comput., 40(5) (2018)]
I Add correction λijXiVj to enforce conservation (Lagrange multiplier).
I Conserves either global invariants or (a projected version of) conservation laws.
I Not able to simultaneously conserve both.



Global vs local conservation

We should not forget the
local conservation law!



Conservative dynamical low-rank approximation



Conservative dynamical low-rank approximation

Fundamental observation: If v 7→ 1/v 7→ v/v 7→ v2 is part of the approximation
space V = span{V1, . . . ,Vr} then we obtain the conservation laws also in the DLRA.

For Kj =
∑

i XiSij we have

f =
∑

j
KjVj , and thus ρ =

∫
f dv =

∑
j

Kj〈1,Vj〉v .

Now we assume that V1 ∝ 1. Then

ρ = 1
V1

K1

and thus
∂tρ = 1

V1
〈V1,RHS〉v =

∫
Ωv

RHS dv = −∇ · j .

Argument from the continuous system carries over.



Problems

These functions do not lie in L2(R3).
I We use an L2 space weighted by f0v .
I For kinetic equations f0v (v) = exp(−v2/2) is usually a reasonable choice.

Low-rank approximation
f = f0v

∑
ij

XiSijVj

with Xi ∈ L2(Ωx ) and

Vj ∈ L2(Ωv , f0v ) =
{

g :
∫

f0v g2 dx <∞
}
.

The basis functions are chosen by the algorithm to satisfy a Galerkin condition.
I Basis functions change as time evolves in order to adapt to the problem.



Conservative dynamical low-rank algorithm

Some of the v dependent basis functions Vj are held fixed

Ua(v) = Va(t, v), 1 ≤ a ≤ m and Wp(t, v) = Vp(t, v), m < p ≤ r .

But orthogonality between Ua and Wp still needs to be enforced.

Petrov–Galerkin condition(
ν

f0v
, ∂t f − RHS

)
xv

= 0 ∀ν ∈ TfM

with (f , g) =
∫

Ωv
fg dv .

Equations of motion for Sij : We test with νkl = f0v XkVl



Equations of motion for X
We test with νk = f0vχVk , χ is arbitrary.
I Since νk = f0v

∑
ij ẊiSijVj with Ẋi = χ(x)S−1

ki it holds that νk ∈ TfM.
The Petrov–Galerkin condition becomes(

Vkχ, f0v
∑

ij

(
ẊiSijVj + Xi ṠijVj

)
+ f0v

∑
ip

XiSipẆp

)
xv

= (Vkχ,RHS)xv .

which we can rewrite as〈
Vkχ,

∑
ij

(
ẊiSijVj + Xi ṠijVj

)
+
∑
ip

XiSipẆp

〉
xv

= (Vkχ,RHS)xv

Using orthogonality/gauge cond. and χ arbitrary, we obtain the equations of motion∑
i

ẊiSik = (Vk ,RHS)v −
∑

i
Xi Ṡik .



Equations of motion for W

We test with νq = f0vζ
∑

i XiSiq, ζ is arbitrary.
I Since νq = f0v

∑
ip XiSipẆp with Ẇp = δpqζ(v) it holds that νq ∈ TfM.

The Petrov–Galerkin condition becomes∑
i

(
ζXiSiq, f0v

∑
kl

(
ẊkSklVl + Xk ṠklVl

)
+ f0v

∑
kp

XkSkpẆp

)
xv

=
∑

i
(ζXiSiq,RHS)xv

Using orthogonality/gauge cond. and ζ arbitrary, we obtain the equations of motion

∑
ip

SiqSip(∂tWp) +
∑

il
Siq(∂tSil )Vl = 1

f0v

∑
i

Siq(Xi ,RHS)x .



Coefficients

The coefficients are slightly different due to the weighted approximation space.

For example

1
f0v

(Xi ,RHS)x = 1
f0v

(Xi ,−v · ∇x f + E · ∇v f )x

= − 1
f0v

∑
kl

f0v 〈Xi ,∇xXk〉x · vSklVl + 1
f0v

∑
kl

Skl∇v (f0v Vl ) · 〈Xi ,EXk〉x

= −
∑
kl

(v · d2
ik)SklVl + 1

f0v

∑
kl

d1
ik [E ] · ∇v (f0v SklVl )

= −
∑
kl

(v · d2
ik)SklVl +

∑
kl

d1
ik [E ] · [∇v (SklVl ) +∇v (log f0v )SklVl ] ,

where
d1

ik [E ] = 〈XiEXk〉x , d2
ik = 〈Xi ,∇xXk〉x .



Conservative dynamical low-rank algorithm

We have
I U1 ∝ 1, U2 ∝ v , U3 ∝ v2 lie in the approximation space span{V1, . . . ,Vr} by

construction;
I The dynamics determined Wp are orthogonal to the Ua as

∂t〈Ua,Wp〉v =
∑
iq

T −1
pq Siq〈 1

f0v
UaXi ,RHS〉xv −

∑
il

T −1
pq Siq∂tSil〈Ua,Vl〉v

=
∑
iq

T −1
pq Siq〈 1

f0v
UaXi ,RHS〉xv −

∑
il

T −1
pq Siq(XiUa,RHS)xv = 0.

Results in a mass, momentum, and energy conservative DLR approximation.



Momentum conservation

We choose U2 such that v = ‖v‖U2, i.e. U2 ∝ v .

Our dynamical low-rank approximation is conservative because we can use the
argument for the original problem.

For example, for the momentum density we have

j =
∫

vf dv =
∑

j
Kj

∫
f0v vVj dv = ‖v‖

∑
j

Kj〈U2,Vj〉 = ‖v‖K2.

Conservation of momentum

∂t j = ‖v‖∂tK2 = ‖v‖(U2,RHS)v =
∫

vRHS dv = −∇x · σ − Eρ.

Integration in x then gives the global invariant.



Conservative time and space discretization



Time discretization

Explicit Euler scheme applied to the equations of motion

Sn+1
kl = Sn

kl + ∆t (Xn
k V n

l ,RHSn)xv ,

Xn+1
i = Xn

i + ∆t
∑

k
(Sn)−1

ik

[
(V n

k ,RHSn)v −
∑

l
Xn

l (Xn
l V n

k ,RHSn)xv

]
,

W n+1
p = W n

p + ∆t
∑

q
((Sn)T Sn)−1

pq

[ 1
f0v

∑
i

Sn
iq(Xn

i ,RHSn)x −
∑

il
Sn

iq (Xn
i V n

l ,RHSn)xv V n
l

]
,

is not conservative.

Uses Sn, i.e. S at time tn, to compute Xn+1.
I There is no well defined Kn and Kn+1 and thus the argument applied before does

not carry over.



Conservative time discretization

We can rewrite the equation for K in conservative form

∂t

(∑
i

XiSik

)
= (Vk ,RHS)v .

Discretization yields the conservative Euler scheme

Sn+1
kl = Sn

kl + ∆t (Xn
k V n

l ,RHSn)xv ,

Xn+1
i =

∑
k

(Sn+1)−1
ik

[∑
j

Xn
j Sn

jk + ∆t (V n
k ,RHSn)v

]
,

W n+1
p = W n

p + ∆t
∑
qi

((Sn)T Sn)−1
pq Sn

iq

[ 1
f0v

(Xn
i ,RHSn)x −

∑
l

(Xn
i V n

l ,RHSn)xv V n
l

]
.

Method is fully explicit and mass and momentum conservative up to machine
precision.



Conservation laws

The conservative Euler scheme also satisfies the discretized versions of the local
conservation laws.

Mass:
ρn+1 − ρn

∆t = 1
U1

Kn+1
1 − Kn

1
∆t =

∫
Ωv

RHSn dv = −∇x · jn.

Momentum:

jn+1 − jn

∆t = ‖v‖Kn+1
2 − Kn

2
∆t =

∫
Ωv

vRHSn dv = −∇x · σn − Enρn.



Failure of energy conservation

We choose U3 such that v2 − 1 = ‖v2 − 1‖U3, i.e. U3 ∝ v2 − 1.

We have

en+1 − en

∆t = ‖v2 − 1‖Kn+1
3 − Kn

3
2∆t + ‖1‖Kn+1

1 − Kn
1

2∆t + (En+1)2 − (En)2

2∆t

= 1
2

∫
Ωv

v2RHSn dv + En En+1 − En

∆t + (En+1 − En)2

2∆t

= ∇x · Qn + En ·
(

En+1 − En

∆t − jn
)

+ (En+1 − En)2

2∆t .

Integrating in x yields

Hn+1 − Hn = ∆t
∫

Ωx
En ·

(
En+1 − En

∆t − jn
)

dx + 1
2

∫
Ωx

(En+1 − En)2 dx = O(∆t2).



Energy conservation

Can be remedied by solving

∂t f + v∇x f − En+1/2∇v f = 0, En+1/2 = (En+1 + En)/2.

Resulting scheme is energy conservative

en+1 − en

∆t = ∇x · Qn − En+1/2 · jn + (En+1 − En)(En+1 + En)
2∆t

= ∇x · Qn + En+1/2 ·
(

En+1 − En

τ
− jn

)

but implicit.



Conservative space discretization

Obtaining a conservative space discretization is straightforward.
I Assumption on the method is that discrete integration by parts is exact.

Examples
I FFT based methods
I Standard second-order centered finite differences
I discontinuous Galerkin schemes with centered flux

Discrete integration by parts for centered differences and periodic boundary
conditions

n−1∑
i=0

(gi+1 − gi−1) =
n∑

i=1
gi −

n−2∑
i=−1

gi = gn − g0 + gn−1 − g−1 = 0.



Numerical results
Conservative DLR and (fully explicit) conservative Euler scheme.
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Dynamical low-rank in uncertainty quantification



Low-rank and uncertainty quantification

Nonlinear hyperbolic conservation law with uncertainty

∂tu(t, x , ξ) +∇ · f (u(t, x , ξ)) = 0.

Dynamical low-rank approximation

u(t, x , ξ) =
∑

ij
Xi (t, x)Sij(t)Vj(t, ξ)

DLR approximation separates deterministic from stochastic dynamics.
I Captures time dependent phenomena not well resolved by polynomial chaos.

K equations maintain hyperbolicity (compare with moments in Stochastic Galerkin).



Shock with uncertainty

Initial shock with uncertainty in shock position and right state.



Boundary conditions

Dirichlet boundary conditions

u(t, xL, ξ) = uL(ξ), u(t, xR , ξ) = uR(ξ).

The low-rank basis is not able to represent the boundary condition as

uL(ξ) 6=
∑

j
E[u(t, xL, ·)Vj(t, ·)]Vj(t, ξ).

We seek an approximation of the form

u(t, x , ξ) =
∑

i
ûi (t, x)Ui (ξ) +

∑
ij

Xi (t, x)Sij(t)Vj(t, ξ).

Once again, exerting more control over the approximation space is required.

J. Kusch, G. Ceruti, L.E., M. Frank, arXiv:2105.04358.



Shock with uncertainty

Initial shock with uncertainty in shock position and right state.



Literature



Literature

[L.E., I. Joseph. J. Comput. Phys. 443, 2021]
I The conservative dynamical low-rank method described in this talk.

[J. Kusch, G. Ceruti, L.E., M. Frank, arXiv:2105.04358]
I Related ideas for enforcing boundary conditions in uncertainty quantification.

[L.E. J. Comput. Phys. 376, 2019]
I Role of conservative methods for integrating the Vlasov equation.
I Accurate solution despite large phase space error.

[N. Crouseilles, L.E., E. Faou. J. Comput. Phys. 283, 2015.]
I Hamiltonian splitting for the Vlasov–Maxwell equations.

https://doi.org/10.1016/j.jcp.2021.110495
https://arxiv.org/abs/2105.04358
https://doi.org/10.1016/j.jcp.2018.10.012
https://doi.org/10.1016/j.jcp.2014.11.029

