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Physical structure of the Vlasov equation




Hamiltonian systems

Reminder: In a Hamiltonian system the time evolution of a quantity F(p, q) can be

written as
al"‘: = {Fa H}

with Hamiltonian H and the symplectic Poisson bracket
{F,G} =V4F -V,G—V,F-V4G.
Since 9:H = {H, H} = 0 we follow that the Hamiltonian, i.e. the energy of the
system, is conserved.
Every quantity C such that {C, H} = 0 is conserved.

A non-canonical Hamiltonian system admits a Poisson bracket [, -] (not necessarily
the symplectic bracket above) that satisfies Anticommutativity, Bilinearity, Leibniz's
rule, and the Jacobi identity.



Non-canonical Hamiltonian systems

Example: The generalized Lotka—Volterra model
i=u(v+w), v=v(u—w+1), w=w(u+v+1)
is a non-canonical Hamiltonian system with

0 uv - uw
H(u,v) = —utv+w+inv—Inw and [F,Gl=(VuwF)"| —uv 0 —ww |Vu,G
—uw vw O

B
C is a Casimir invariant if {C, F} = 0 holds for all F.
» We call the Poisson bracket degenerate.
Example: For the Lotka—Volterra model C(u,v) = —Inu —Inv +Inw is a Casimir

invariant as (V,,wC)"B = 0.



Vlasov—Maxwell equations

Vlasov equation
Otf +v-Vyf —(E+vxB)-V,f=0

coupled to Maxwell’s equations
OE = Vi x B—], 9;B=—-V,xE,

where j = [vfdv.

There are also constraints (automatically satisfied in the continuous case)

V-B=0, V-E=1—-p



Hamiltonian structure

The Vlasov—Maxwell equations have a non-canonical Hamiltonian structure.

1 > c? 2
H = §/|E\ dx—l—?/|8] dx +

=: He+Hp+

Evolution of F
0:F = [F, H] = [F, Hg] + [F, Hg] +

with a highly non-canonical Poisson bracket.

We have an infinite number of Casimir invariants as any C(f) satisfies [C,G] =0
for arbitrary G.

» |If|l2 (in fact, any LP norm)
» Entropy — [ f log f d(x, v).



Accuracy of Vlasov simulation

Performance is often checked by using a work-precision diagram.
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Two-stream instability

Vlasov—Poisson equation with 128* degrees of freedom.
electric energy
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Two-stream instability

Vlasov—Poisson equation with 128* degrees of freedom.

electric energy
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Two-stream instability

Vlasov—Poisson equation with 324 degrees of freedom.

electric energy
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Discussion

We are in the asymptotic regime if classic convergence theory applies. That is,
error < C ((At)? + (Ax)9).
gives a tight bound of the error.
Why is this not the case here? Consider
Otf(t, x,v) + vOxf(t,x,v) =0, f(0,x,v) = efkxg=v2/2

which has the solution ,
f(t,X, V) — e/ktve/kxefv /2'

Small scale structures (e.g. filamentation, turbulence, ...) can not be resolved.
» All methods are necessarily inaccurate.
» Often we can still get good physics out of those methods.



Two-stream instability

L2 norm as a measure of numerical diffusion.
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Dynamical low-rank




Galerkin condition

Orthogonal projection
Find 0:.f =g € TfM such that |g — RHS| is minimal.

That is, g = P(f)RHS.
Galerkin condition

Find 0:f such that (v,0:f) = (v,RHS) Vv e TeM.

For the Schrédinger equation implies symplecticity, energy, and norm conservation.

» But the situation here is very different.



[2 conservation

Galerkin condition implies L2 norm conservation
OeIf |1 = 2(F, 0¢F)xy = 2(F, RHS)xy = 0

since f € T M.
But wait, why do we have (f, RHS),, = 0?

This is how we (directly) prove L? conservation for the underlying model
O:|If|I” = 2(F, RHS) 0 = /Vx (vf?) =V, - (EF*)d(x,v) = 0.

The analytic argument carries over. This will be an important technique!



Mass conservation

From

we follow by integrating in v
8t/fdx+vx-/vfdv:0,

which is more commonly written as

Op+V-j=0, p:/fdv, j:/vfdv.

Integrating in x we get
M = /fd(x, v) = const.

That is, conservation of mass.



Momentum or charge conservation

From
Ot(vf) + Vi - (v v)f)—vV, - (Ef)=0

we follow by integrating in v

8tj+VX-U:—/Efdv:Ep, U:/(V@V)fdv.

Since
E(l-p)=V-(E®E-1E?)

and [ E dx = 0 we obtain
P= / vfd(x, v) = const,

That is, conservation of momentum.



Energy conservation

We already know that energy (i.e. the Hamiltonian) is conserved

1 1
H:E/v2fd(x, v)+§/52dx.

Similar to mass and momentum there is also an associated local conservation law

1 1 1
Dre+Vy-Q=E - (3:E — ), ezé/v2fdv+§E2, Q:E/vvzfdv.



Dynamical low-rank approximation

The dynamical low-rank approximation finds the, in some sense, best L2
approximation.

» No guarantee that mass, momentum, or energy is conserved.

Linear Landau damping (left) and two-stream instability (right).

error mass error mass

This failure is in stark contrast to Eulerian and particle methods.



Literature

[Z. Peng, R. McClarren, M. Frank, J. Comput. Phys., 421 (2020)]
» Rescale solution to obtain mass conservation.
» Global mass conservation only.

» Not extensible to other invariants.

[Z. Peng, and R.G. McClarren. arXiv:2011.06072]
» Couple moments with low-rank approximation of g, where f = M + g.
» Needs to enforce [ gd(x,v)=0.

» Global invariants only.

[L. Einkemmer, C. Lubich. SIAM J. Sci. Comput., 40(5) (2018)]
» Add correction A\ X;V; to enforce conservation (Lagrange multiplier).
» Conserves either global invariants or (a projected version of ) conservation laws.

» Not able to simultaneously conserve both.



Global vs local conservation
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Conservative dynamical low-rank approximation




Conservative dynamical low-rank approximation

Fundamental observation: If v — 1/v — v/v — v is part of the approximation
space V =span{V4,..., V,} then we obtain the conservation laws also in the DLRA.

For K; = >_; X;Sjj we have

f=> KV, and thus p:/fdv:ZKj<1 Vi)
J J
Now we assume that V4 < 1. Then
p= K

and thus dep = — (V4,RHS), / RHS dv = —V - j

Argument from the continuous system carries over.



Problems

These functions do not lie in L?(R3).
» We use an L? space weighted by f,, .
» For kinetic equations is usually a reasonable choice.

Low-rank approximation
f=rn > XiS;V
ij

with X; € L2(Qy) and

VJ'ELZ(waOv):{g: / gde<OO}.

The basis functions are chosen by the algorithm to satisfy a Galerkin condition.

» Basis functions change as time evolves in order to adapt to the problem.



Conservative dynamical low-rank algorithm

Some of the v dependent basis functions V; are held fixed

Us(v) = Vu(t,v), 1<a<m and Wp(t,v) = V,(t,v),

But orthogonality between U, and W, still needs to be enforced.

Petrov—Galerkin condition

(”,atf— ):o Vv e TrM
fbv XV

with (f,g) = [q, fgdv.

Equations of motion for S;: We test with vy = fo, X, V)

m<p<r.



Equations of motion for X

We test with v, = fy, x Vi, x is arbitrary.
> Since vk = fo, 3 XiS;V; with X; = x(x)S;" it holds that v € TrM.

The Petrov—Galerkin condition becomes

(Ve for 3 (X555 + Xi5515) + fou S-Sy ) = (Vi RHS),,.
ip

XV

i)

which we can rewrite as

<ka, > (KiSVy+ Xi53 Vi) + D XiSip Wp> = (Vix, RHS),,,

ip XV
Using orthogonality/gauge cond. and  arbitrary, we obtain the equations of motion

ZXiSik:(Vlﬂ )V—ZX,‘S;[('



Equations of motion for W

We test with vg = f5,(>"; XiSig, C is arbitrary.
> Since vg = fov >_), X,-S;pr with Wp = 0pgC(v) it holds that v, € Tf M.

The Petrov—Galerkin condition becomes

> (CX/Sim fou > (stkl Vi + Xk Su V/) + fov Y XkSkp Wp) =Y ((XiSig, )xv

i Kl kp xv i

Using orthogonality/gauge cond. and ( arbitrary, we obtain the equations of motion

Z 5lqslp a1.‘ + Z Slq 8tsll VI Z Slq i )x-

ip



Coefficients

The coefficients are slightly different due to the weighted approximation space.

For example

fjv(x,-, RHS), = f; (Xi, —v - Vxf +E-V,f),
= fo\/zfov Xi, Vi Xi)x - VSk/VI+€ZSk/v (fov Vi) - (X, EXk)x
:—Z(v dz) 5k/V/+de [E]- V. (fov S Vi)
fov
:_Z(v d2) 5k/V/+Zd [E]- [V (SuV)) + SuVi,
where

di]l}[E] = <XiEXk>X> d2k = <Xi7vXXk>x-

]



Conservative dynamical low-rank algorithm

We have

» U; 1, Us xx v, Us < v? lie in the approximation space span{V4,..., V,} by

construction;
» The dynamics determined W, are orthogonal to the U, as

Ot (Ua, W,) Z Toq Sig(7=UaXi, RHS) Z T oo Siq0:Si(Ua, Vi)y

Z Toq Sig (7= UaXi, RHS) . Z Too Sig(XiUa, RHS),,

Results in a mass, momentum, and energy conservative DLR approximation.



Momentum conservation

We choose U; such that v = ||v||Uz, i.e. Uz x v.

Our dynamical low-rank approximation is conservative because we can use the
argument for the original problem.

For example, for the momentum density we have

j= [viav =K [y = v S K2 V) = vl K
J J

Conservation of momentum

0ej = ||VI|9eKa = [|v]|(Ua, RHS), = / VRHS dv = —V,, - o — Ep.

Integration in x then gives the global invariant.



Conservative time and space discretization




Time discretization

Explicit Euler scheme applied to the equations of motion
Sit = Sh+ At (X{V/,RHS™),

X,'n+1 = X"+ Atz (S")i ik {( Vi, RHS" ZX/ (X" Vi, RHSH)XV] 7
k

witt = W”+Atz SMTS™,. [ ZS” X" RHS™) Z (X"V/,RHS"),, V,
is not conservative.

Uses S”, i.e. S at time t”, to compute X"*1.
» There is no well defined K" and K"*1 and thus the argument applied before does

not carry over.



Conservative time discretization

We can rewrite the equation for K in conservative form
at(Zx,-s,-k) — (Vi RHS), .

Discretization yields the conservative Euler scheme

S = S 4+ At (X[ V[, RHS")

XPh=3 (8" [Z X7'Si + At (Vf, RHS")V},
k J
n+1 _ n n T 1cn n n ny/n n n
W W+ BT SRS PG )= S OPVIRHS),, V7|

Method is fully explicit and mass and momentum conservative up to machine
precision.



Conservation laws

The conservative Euler scheme also satisfies the discretized versions of the local
conservation laws.

Mass: - »
P —p" 1 KT KT ,
= = RHS"dv = -V, - j".
At Ui At a, Y J
Momentum:
jn+1 _jn K2n+1

— K7
= VI :/ VRHS" dv = —V, - 0" — E"p".
Q,

At A



Failure of energy conservation

We choose U such that v —1 = ||v? — 1||Us, i.e. Us ox v —1.

We have
el ey K§H - K " KIT =K (B0 ()
At 2At 2At 2At
1 ) Enfl _ En (En+1 o En)2
= — RHS" d E"
2/£VV v At T A
En+1 _ En (E”+1 o En)2
= . n En . - —j" N
Vi Q14 ( At J ) + 2At

Integrating in x yields

W“—W:A#‘F-

X

(En—i-l _E"

1
_n - En+1_En2 _ 2‘
; j>dx+2/QX( )2dx = O(At?)



Energy conservation

Can be remedied by solving

Oef + vV f — EMT12V f =0, EMY2 — (EMY 4 EM) )2,

Resulting scheme is energy conservative

en+1 —en +1 (En+1 o E”)(E"+l + En)
R . On _ gn+l/2  on
At VX Q E J + AT
En+1 _ En
=V, Q"+ E"L/2. <7- j”)

but implicit.



Conservative space discretization

Obtaining a conservative space discretization is straightforward.

» Assumption on the method is that discrete integration by parts is exact.

Examples
» FFT based methods
» Standard second-order centered finite differences

» discontinuous Galerkin schemes with centered flux

Discrete integration by parts for centered differences and periodic boundary
conditions

n—1

n
> (gi41—&i-1) = D _&i Z 8 =8 —8 +8 1—81=0.
i=1

i=0 i=—1



Numerical results

Conservative DLR and (fully explicit) conservative Euler scheme.
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Dynamical low-rank in uncertainty quantification




Low-rank and uncertainty quantification

Nonlinear hyperbolic conservation law with

Oru(t,x, &)+ V- f(u(t,x,&)) =0.

Dynamical low-rank approximation

u(t,x, &) = ZX (t,x)S;(t)Vi(t,€)

DLR approximation separates deterministic from stochastic dynamics.
» Captures time dependent phenomena not well resolved by polynomial chaos.

K equations maintain hyperbolicity (compare with moments in Stochastic Galerkin).



Shock with uncertainty

Initial shock with uncertainty in shock position and right state.

Expectation
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Boundary conditions

Dirichlet boundary conditions
u(t, x,€) = ur(§), u(t, xr, &) = ur(§)-

The low-rank basis is not able to represent the boundary condition as

#ZE[U (8, xc, ) Vj(t, )] Vi(t, ).

We seek an approximation of the form

u(t,x,{)zz +ZX (t,x)S;(t)Vi(t,€).

i

Once again, exerting more control over the approximation space is required.

J. Kusch, G. Ceruti, L.E., M. Frank, arXiv:2105.04358.



Shock with uncertainty

Initial shock with uncertainty in shock position and right state.

Expectation
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Literature

[L.E., I. Joseph. J. Comput. Phys. 443, 2021]
» The conservative dynamical low-rank method described in this talk.

[J. Kusch, G. Ceruti, L.E., M. Frank, arXiv:2105.04358]

» Related ideas for enforcing boundary conditions in uncertainty quantification.

[L.E. J. Comput. Phys. 376, 2019]
» Role of conservative methods for integrating the Vlasov equation.

» Accurate solution despite large phase space error.

[N. Crouseilles, L.E., E. Faou. J. Comput. Phys. 283, 2015.]

» Hamiltonian splitting for the Vlasov—Maxwell equations.
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