
Structure preserving low-rank algorithms for plasma simulations
Part 4: Conservative and asymptotic preserving low-rank

methods

Lukas Einkemmer
University of Innsbruck

Structure-Preserving Scientific Computing and Machine Learning Summer School
and Hackathon, UW Seattle, 2025

Link to slides: http://www.einkemmer.net/training.html

http://www.einkemmer.net/training.html


Conservative dynamical low-rank approximation



Conservative dynamical low-rank approximation

Fundamental observation: If v 7→ 1/v 7→ v/v 7→ v2 is part of the approximation
space V = span{V1, . . . , Vr } then we obtain the conservation laws also in DLR.

For Kj =
∑

i XiSij we have

f =
∑

j
KjVj , and thus ρ =

∫
f dv =

∑
j

Kj⟨1, Vj⟩v .

Now we assume that V1 ∝ 1. Then

ρ = 1
V1

K1

and thus
∂tρ = 1

V1
∂tK1 = 1

V1
⟨V1, RHS⟩v =

∫
Ωv

RHS dv = −∇ · j .

Argument from the continuous system carries over.



Problems

The basis functions are chosen by the algorithm to satisfy a Galerkin condition.
▶ Basis functions change as time evolves in order to adapt to the problem.

Idea: Keep some basis functions fixed (to ensure conservation) and choose the
remaining by a Galerkin condition.
▶ Orthogonality between all these basis functions still needs to be satisfied.



Solutions
Modify the equations of motions to keep 1, v , v2 in the approximation space.
[L.E., I. Joseph. J Comput. Phys. 443, 2021]
▶ Conservative on the continuous level. Requires an integrator that does not destroy

this property.
▶ Difficult to do with projector splitting integrator.

Micro-macro decomposition
[J. Coughlin, J. Hu, U. Shumlak. J. Comput. Phys. 509, 2024]
▶ Solve the equations for the moments explicitly and remainder with low-rank.
▶ Still needs to enforce condition on low-rank solution ⇒ Hermite spectral

discretization.
I will show you an easy way to add conservation based on the basis update &
Galerkin robust integrator.
[L.E., J. Kusch, S. Schotthöfer. arXiv:2311.06399]
▶ The idea of basis augmentation can be useful for a range of other problems.

https://doi.org/10.1016/j.jcp.2021.110495
https://doi.org/10.1016/j.jcp.2024.113055
https://arxiv.org/abs/2311.06399


Basis update & Galerkin (BUG) integrator



BUG integrator

Basis update & Galerkin (BUG) integrator (also called the unconventional
integrator)
1.1 K step with Kj(0) =

∑
i Xn

i Sn
ij to obtain Xn+1 = orth(K (∆t)).

1.2 L step with Li(0) =
∑

j V n
j Sn

ij to obtain V n+1 = orth(L(∆t)).
2 Compute Mij = ⟨Xn+1

i , Xn
j ⟩x and Nij = ⟨V n+1

i , V n
j ⟩v and set

S(0) = MSNT .

Note that ∑
ij

Xn+1
i Sij(0)V n+1

j = PXn+1PV n+1
∑

ij
Xn

i Sn
ij V n

j .

3 S step to get Sn+1 = S(∆t).

G. Ceruti, C. Lubich. BIT Numer. Math. 62, 2022.



BUG integrator

Note that
▶ S step is forward in time.
▶ S step is a Galerkin projection on the basis Xn+1 and V n+1.

We only use the basis information from the K and L step (S is not changed).
▶ In the QR decomposition, e.g. K (∆t) = Xn+1R, we throw away the R.



Problems with the BUG integrator
The initial value can not be exactly represented, i.e. f n ̸= PXn+1PV n+1f n.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 7 Lie (avg t = 1.52e-05)

ee
me

ke-ke(0)
theory

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 7 Strang (avg t = 1.05e-04)

ee
me

ke-ke(0)
theory

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 7 BUG (avg t = 7.46e-06)

ee
me

ke-ke(0)
theory

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 7 aug. BUG (avg t = 1.53e-05)

ee
me

ke-ke(0)
theory

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time

10 15

10 14

10 13

10 12

10 11

10 10

m
as

s e
rro

r (
re

la
tiv

e)

Lie
Strang

BUG
aug. BUG

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time

10 17

10 15

10 13

10 11
m

om
en

tu
m

 e
rro

r (
re

la
tiv

e) Lie
Strang

BUG
aug. BUG

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time

10 15

10 14

10 13

10 12

10 11

10 10

en
er

gy
 e

rro
r (

re
la

tiv
e)

Lie
Strang

BUG
aug. BUG

Results in issues with stability, step size, conservation, etc.



Augmented BUG integrator

To fix this we consider the augmented BUG integrator
1.1 K step to get K (∆t).
1.2 L step to get L(∆t).

2 Construct augmented basis X = orth([Xn, K (∆t)]) and V = orth([V n, L(∆t)]).
3 S step is a Galerkin projection on X and V .
4 Truncate to rank r (or a given tolerance) by SVD of S.

We require truncation because otherwise the rank doubles in each time step.
We require low-rank factors of size 2r ⇒ added computational cost.
▶ Gain flexibility with respect to augmenting the basis (conservation, AP, ...).
▶ Natural rank adaptivity.

This is a first order scheme, but has recently been extended to higher order.

G. Ceruti. J. Kusch. C. Lubich. BIT Numer. Math. 62, 2022.
G. Ceruti, L.E., J. Kusch, C. Lubich. BIT Numer. Math. 64:30, 2024.



Implementation details
To compute Xn+1 we do a QR decomposition

X , = qr([Xn, K (∆t)]).

We know that Xn is already orthogonal, so we set

X̂ = [Xn, X (·, r : 2r)].

Same for V n+1.
Then the initial condition for the S step is

S(0) =
[

Sn 0
0 0

]
.

We have an exact representation of the initial value in the new basis

XnSnV n = X̂S(0)V̂



Rank truncation

We need to truncate after each time step.

Compute SVD of S
S(∆t) = UΣW T

Computational effort is low as S ∈ R2r×2r .

Set

Xn+1 = (X̂U)(·, 1 : r), V n+1 = (V̂ W )(·, 1 : r), Sn+1 = Σ(1 : r , 1 : r)

which can be done in O(nd r2).

Can also be done adaptively (only drop singular values that are small enough).



Mass conservative BUG integrator



Problem

We consider
∂t f = RHS(f ).

For a velocity-dependent function U(v) assume that we have a moment equation

ϕ(t, x) = ⟨f , U⟩v , ∂tϕ(t, x) = ⟨RHS(f ), U⟩v

such that
∂t⟨ϕ(t, x)⟩x = ⟨RHS(f ), U⟩xv = 0.

For U(v) = 1 we get mass conservation.



Mass conservation

We want to preserve the moment equation moment

∂tϕ = ⟨RHS (f ) , U⟩v .

S step can be written as (Galerkin projection)

∂t fr (t, x , v) = PV̂ PX̂ RHS(fr )

which for the moment gives

∂tϕr (t, x) = ⟨PV̂ PX̂ RHS(fr ), U⟩v

= ⟨PX̂ RHS(fr ), PV̂ U⟩v

= ⟨PX̂ RHS(fr ), U⟩v .

since we have constructed our basis such that U ∈ spanV̂ .



Mass conservation

We have
∂tϕr = PX̂ ⟨RHS(fr ), U⟩v .

For
⟨RHS(fr ), U⟩v ∈ span(X̂ ).

we have
∂tϕr = ⟨RHS(fr ), U⟩v

which is exactly the mass continuity equation.

Integrating in x would give mass conservation.

But, we can not augment ⟨RHS(fr ), U⟩v (t, x) for each t.



Special case: Explicit Euler

K step:
K ⋆ = Kn + ∆tPV̂ RHS(KnV̂ T).

By augmentation we have span(X̂ ) = span([Xn, PV̂ RHS(KnV̂ T)]).

S step:

Ŝn+1 = Ŝn + ∆tPX̂ PV̂ RHS(X̂ ŜnV̂ T )

= Ŝn + ∆tPV̂ RHS(X̂ ŜnV̂ T )



Special case: Explicit Euler

We have

ϕn+1 = ϕn + ∆t⟨PV̂ RHS(X̂ ŜnV̂ T ), U⟩v

= ϕn + ∆t⟨RHS(X̂ ŜnV̂ T ), PV̂ U⟩v

= ϕn + ∆t⟨RHS(X̂ ŜnV̂ T ), U⟩v

= ϕn + ∂x jn.

which is the explicit Euler approximation of the mass continuity equation.

Integrating in x
mass = ⟨ϕn+1⟩x = ⟨ϕn⟩x +����⟨∂x jn⟩x .

Mass conservation!



General Runge–Kutta methods

For i = 1, . . . , s

Ŝ(i) =
〈
RHS(i), X̂ V̂

〉
xv

,

RHS(i) = RHS

X̂ ŜnV̂ T + ∆t
i−1∑
j=1

aij X̂ Ŝ(j)V̂ T

 .

Without low-rank (RK methods conserve all linear invariants)

ϕn+1(x) = ϕn(x) + ∆t
s∑

i=1
bi⟨RHS(i), U⟩v .

For the low-rank scheme we get

ϕn+1
r (x) = ϕn

r (x) + ∆tPX̂

s∑
i=1

bi⟨RHS(i), U⟩v .



General Runge–Kutta methods

We can satisfy
s∑

i=1
bi⟨RHS(i), U⟩v ∈ span(X̂ )

easily by augmenting a single basis

X = ortho
([

X̂ ,
s∑

i=1
bi⟨RHS(i), U⟩v

])
= [X̂ , X ⋆].

RK approximation of the mass continuity equation and mass conservative.



Details
The K and L step has no bearing on conservation.

1. For i = 1, · · · , s compute

Ŝ(i) =
〈
RHS(i)

K , X̂
〉

x
with RHS(i)

K = ⟨RHS(i), V̂ ⟩v .

Note that RHSK is the rhs of the K step.
2. Augment (see last slide)
3. Compute

S(i) = [Ŝ(i),⊤, S⋆,⊤]⊤ ∈ R(2r+1)×2r with S⋆ = ⟨RHS(i)
K , X ⋆⟩x

and

Sn+1 = Sn + ∆t
s∑

i=1
biS

(i)
.



Conservative truncation

We have to truncate.
▶ SVD minimizes the L2 error ⇒ destroys conservation.

Idea
▶ First project onto U (guarantees conservation)
▶ Truncate the remainder by performing an SVD.
▶ More details later



Momentum and energy conservation

In principle, works in the same way.

But, the growth of U(v) = v becomes an issue at the (artificial) boundary.

We reformulate the method in a weighted space L2(Ωv , f0v ) with

f (t, x , v) = f0v (v)
∑

ij
Xi(t, x)Sij(t, x)Vj(t, v),

where Vj ∈ L2(Ωv , f0v ).

Caution: V needs to the orthogonalized with respect to the weighted norm.

Same for U(v) = v2 and energy conservation
▶ Exact for DLR, but error of the time integrator needs to be taken into account.



Numerical example

Conservative (full lines) and standard (dashed lines) integrators for a bump-on-tail
instability.

0 10 20 30 40 50
time

10 16

10 14

10 12

10 10

10 8

10 6

er
ro

r i
n 

m
as

s

BUG
BUG midp
Strang PSI
mod BUG
mod BUG midp
cons Parallel2

0 10 20 30 40 50
time

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

er
ro

r i
n 

m
om

en
tu

m

BUG
BUG midp
Strang PSI
mod BUG
mod BUG midp
cons Parallel2



Conservative truncation algorithm: Part 1
1. Compute K̃ = X̃n+1S̃n+1 and distribute it into two parts

K̃ = [K̃ cons K̃ rem],
where K̃ cons consists of the first m columns of K̃ and K̃ rem of the remaining
columns.

2. Perform a QR decomposition of K̃ cons , getting
K̃ cons = X consScons .

3. Perform a QR decomposition of K̃ rem, getting
K̃ rem = X̃ remS̃rem.

4. Compute the singular value decomposition (SVD) of S̃rem, keep the largest r − m
singular values

S̃rem ≈ ÛŜŴ T

and compute
X rem = X̃ remÛ, Srem = Ŝ, W n+1 = W̃ n+1Ŵ .



Conservative truncation algorithm: Part 2

4 Set
V n+1 =

[
U W n+1

]
.

5 Set X̂ = [X cons X rem] and perform a QR decomposition

X̂ = Xn+1R.

6 Set
Sn+1 = R

[
Scons 0

0 Srem

]
.

7 The computed approximation at time tn+1 is then given by

f n+1 = f0v
∑

ij
Xn+1

i Sn+1
ij V n+1

j .



Outlook

One strength of DLR is that it can be easily combined with a variety of time and space
discretization strategies.
▶ Much work on implicit, IMEX, semi-Lagrangian, spectral, etc. methods.

Collisional problems are even more suited for low-rank methods (collisions regularize
the solution).
▶ Much work on asymptotic preserving methods and efficient schemes.

One can also further decompose the problem, i.e. tensor decompositions.
▶ Much work on different tensor formats (tree tensor networks, hierarchical Tucker,

tensor trains, ...).

Interpolatory low-rank methods require only point-wise evaluations of the right-hand
side.
▶ Allows for treatment of more general nonlinearities.



Literature



Literature

[L.E., I. Joseph. J. Comput. Phys. 443, 2021]
▶ The conservative dynamical low-rank equations of motions.

[L.E., A. Ostermann, C. Scalone. J. Comput. Phys. 484, 2023]
[W. Guo, J.-M. Qiu. J. Sci. Comput. 61, 2024]
▶ The conservative truncation.

[J. Coughlin, J. Hu, U. Shumlak. J. Comput. Phys. 509, 2024]
▶ Solve the equations for the moments explicitly and remainder with low-rank.

[L.E., J. Kusch, S. Schotthöfer. arXiv:2311.06399]
▶ The conservative method described here.

[L.E., K. Kormann, J. Kusch, R.G. McClarren, J.-M. Qiu. arXiv:2412.05912]
▶ Review article with comparison to other methods and survey of the literature.

https://doi.org/10.1016/j.jcp.2021.110495
https://doi.org/10.1016/j.jcp.2023.112060
https://doi.org/10.1007/s10915-024-02684-1
https://doi.org/10.1016/j.jcp.2024.113055
https://arxiv.org/abs/2311.06399
https://arxiv.org/abs/2412.05912

