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Efficient implementation using Ensign



Software aspects

DLR is mostly formulated in terms of dense matrix/vector operations.
▶ Very well suited for modern computer architectures.

Ensign is a C++ software package that facilitates the implementation of dynamical
low-rank algorithms.
▶ Data structure for DLR (matrix and tensor tree decompositions)
▶ Functions for computing coefficients, initialization/orthogonalization, ...
▶ Can be supplemented by user defined space and time discretization routines
▶ Uses highly optimized linear algebra routines behind the scenes (Intel MKL,

cuBLAS, ...)
▶ Support for multi-core CPU and CUDA capable GPUs

Ensign is open source under the MIT license.
▶ https://github.com/leinkemmer/Ensign

https://github.com/leinkemmer/Ensign


6D Vlasov–Poisson simulation
A 3+3 dimensional two-stream instability with r = 5, r = 10, r = 15, r = 20.

Dense linear algebra is very efficient on GPUs.
▶ For 1283 × 1283 grid points and r = 10 simulation time on GPU is 20 min.
▶ Would require at least 70 TB of memory for directly solving Vlasov-Poisson.

F. Cassini, L.E. Comput. Phys. Commun. 280, 2022.



Alfvén waves

Shear Alfvén waves are electromagnetic waves in a plasma that propagate parallel
to the magnetic field.
▶ Can be destabilized by beams (as in NBI) or energetic particles.

Described by a 4D gyrokinetic equation.

Resolution rank Lie (time/step) speedup memory usage memorydown
full 2.3e+02 s – 2.1 GB –

2 0.024 s 9276 1 MB 2048
643 × 512 5 0.13 s 1764 3 MB 819

10 0.8 s 283 5 MB 410
15 2.9 s 78 8 MB 273

full – – 2.7e+02 GB –
2 0.45 s – 8 MB 32768

2563 × 1024 5 4.1 s – 21 MB 13107
10 35 s – 42 MB 6554
15 1.7e+02 s – 63 MB 4369

L.E. J. Comput. Phys. 501, 2024.



Ensign example
#include <lr/lr.hpp>

// vector and matrices (can be either on the CPU or GPU)
using vec = Ensign::multi_array<double,1>;
using mat = Ensign::multi_array<double,2>;
using lr = Ensign::lr2<double>;

// Initialization
lr f(r, {nx, nv});
Ensign::initialize(f, in_x, in_v, hx, hv, blas); // in_x and in_v filled with IC

// K step
mat K({nx,r});
mat c1 = compute_c1(f.V);
mat c2 = compute_c2(f.V);
blas.matmul(f.X, f.S, K);
rk4(deltat, K, [&c1, &c2, &E](const mat& K, mat& Kout) {

Kout = rhs_K(K, c1, c2, E);
});



Ensign example
#include <lr/coefficients.hpp>

mat compute_c1(const mat& V) {
mat Vtmp({nv,r}), c1({r,r});
Ensign::Matrix::ptw_mult_row(V,vs,Vtmp); // multiply by v
Ensign::coeff(V, Vtmp, hv, c1, blas);
return c1;

}

vec compute_rho(const lr& f) {
mat K({nx, r});
vec int_V({r}), rho({nx});

Ensign::integrate(f.V,-hv,int_V,blas);
blas.matmul(f.X,f.S,K);
blas.matvec(K,int_V,rho);
return rho;

}



Applications beyond plasma physics

Chemical master equation solver based on Ensign developed by Julian Mangott.
pip install atropy

Tree based decompositions (such as tensor trains and hierarchical Tucker)

[Video: toogle switch]

https://atropy.gitlab.io/

https://atropy.gitlab.io/


Physical structure of the Vlasov equation



Hamiltonian systems

Reminder: In a Hamiltonian system the time evolution of a quantity F (p, q) can be
written as

∂tF = {F , H}

with Hamiltonian H and the symplectic Poisson bracket

{F , G} = ∇qF · ∇pG − ∇pF · ∇qG .

Since ∂tH = {H, H} = 0 we follow that the Hamiltonian, i.e. the energy of the
system, is conserved.

Every quantity C such that {C , H} = 0 is conserved.

A non-canonical Hamiltonian system admits a Poisson bracket [·, ·] (not necessarily
the symplectic bracket above) that satisfies Anticommutativity, Bilinearity, Leibniz’s
rule, and the Jacobi identity.



Non-canonical Hamiltonian systems

Example: The generalized Lotka–Volterra model

u̇ = u(v + w), v̇ = v(u − w + 1), ẇ = w(u + v + 1)

is a non-canonical Hamiltonian system with

H(u, v) = −u+v+w+ln v−ln w and [F , G ] = (∇uvw F )T

 0 uv uw
−uv 0 −vw
−uw vw 0


︸ ︷︷ ︸

B

∇uvw G

C is a Casimir invariant if {C , F} = 0 holds for all F .
▶ We call the Poisson bracket degenerate.

Example: For the Lotka–Volterra model C(u, v) = − ln u − ln v + ln w is a Casimir
invariant as (∇uvw C)T B = 0.



Vlasov–Maxwell equations

Vlasov equation
∂t f + v · ∇x f − (E + v × B) · ∇v f = 0

coupled to Maxwell’s equations

∂tE = c2∇x × B − j , ∂tB = −∇x × E ,

where j =
∫

vf dv .

There are also constraints (automatically satisfied in the continuous case)

∇ · B = 0, ∇ · E = 1 − ρ



Hamiltonian structure

The Vlasov–Maxwell equations have a non-canonical Hamiltonian structure.

H = 1
2

∫
|E |2 dx + c2

2

∫
|B|2 dx + 1

2

∫
v2f d(x , v)

=: HE + HB + Hf .

Evolution of F
∂tF = [F , H] = [F , HE ] + [F , HB] + [F , Hf ]

with a highly non-canonical Poisson bracket.

We have an infinite number of Casimir invariants as any C(f ) satisfies [C , G ] = 0
for arbitrary G .
▶ ∥f ∥2 (in fact, any Lp norm)
▶ Entropy −

∫
Ω f log f d(x , v).



Accuracy of Vlasov simulation

Performance is often checked by using a work-precision diagram.
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Two-stream instability
Vlasov–Poisson equation with 1284 degrees of freedom.



Two-stream instability
Vlasov–Poisson equation with 1284 degrees of freedom.



Two-stream instability
Vlasov–Poisson equation with 324 degrees of freedom.
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The method with better accuracy (spline) is much worse in practice.



Discussion

We are in the asymptotic regime if classic convergence theory applies. That is,

error ≤ C ((∆t)p + (∆x)q) .

gives a tight bound of the error.

Why is this not the case here? Consider

∂t f (t, x , v) + v∂x f (t, x , v) = 0, f (0, x , v) = eikxe−v2/2

which has the solution
f (t, x , v) = eiktv eikxe−v2/2.

Small scale structures (e.g. filamentation, turbulence, ...) can not be resolved.
▶ All methods are necessarily inaccurate.
▶ Often we can still get good physics out of those methods.



Two-stream instability
L2 norm as a measure of numerical diffusion.
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Invariants more important than accuracy.
▶ Numerical methods should be designed with this in mind.



Dynamical low-rank and conservation



Galerkin condition

Orthogonal projection

Find ∂t f = g ∈ Tf M such that ∥g − RHS∥ is minimal.

That is, ∂t f = g = P(f )RHS.

Galerkin condition

Find ∂t f such that ⟨ν, ∂t f ⟩ = ⟨ν, RHS⟩ ∀ν ∈ Tf M.

For the Schrödinger equation implies symplecticity, energy, and norm conservation.
▶ But the situation for kinetic equations is very different.



L2 conservation

Galerkin condition implies L2 norm conservation

∂t∥f ∥2 = 2⟨f , ∂t f ⟩xv = 2⟨f , RHS⟩xv = 0

since f ∈ Tf M.

But wait, why do we have ⟨f , RHS⟩xv = 0?

This is how we (directly) prove L2 conservation for the underlying model

2⟨f , RHS⟩xv = 2
∫

−vf · ∇x f + Ef · ∇v f d(x , v) = 0.

=
∫

−∇x · (vf 2) + ∇v · (Ef 2) d(x , v) = 0.

The analytic argument carries over. This will be an important technique!



Mass conservation

From
∂t f + ∇x · (vf ) − ∇v · (Ef ) = 0

we follow by integrating in v

∂t

∫
f dx + ∇x ·

∫
vf dv = 0,

which is more commonly written as

∂tρ + ∇ · j = 0, ρ =
∫

f dv , j =
∫

vf dv .

Integrating in x we get
M =

∫
f d(x , v) = const.

That is, conservation of mass/conservation of particles/conservation of charge.



Momentum conservation

From
∂t(vf ) + ∇x · ((v ⊗ v)f ) − v∇v · (Ef ) = 0

we follow by integrating in v

∂t j + ∇x · σ =
∫

v∇v · (Ef ) dv = −
∫

Ef dv = Eρ, σ =
∫

(v ⊗ v)f dv .

Since
E (1 − ρ) = ∇ · (E ⊗ E − 1

2E 2)

and
∫

E dx = 0 we obtain

P =
∫

vf d(x , v) = const,

That is, conservation of momentum/conservation of current.



Energy conservation

We already know that the energy (i.e. the Hamiltonian) is conserved

H = 1
2

∫
v2f d(x , v) + 1

2

∫
E 2 dx .

Similar to mass and momentum there is also an associated local conservation law

∂te + ∇x · Q = E · (∂tE − j), e = 1
2

∫
v2f dv + 1

2E 2, Q = 1
2

∫
vv2f dv .



Dynamical low-rank approximation

The dynamical low-rank approximation finds the best L2 approximation.
▶ No guarantee that mass, momentum, or energy is conserved.

Linear Landau damping (left) and two-stream instability (right).
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This failure is in stark contrast to Eulerian and particle methods.



Literature

[Z. Peng, R. McClarren, M. Frank. J. Comput. Phys., 421 (2020)]
▶ Rescale solution to obtain mass conservation.
▶ Global mass conservation only.
▶ Not extensible to other invariants.

[Z. Peng, and R.G. McClarren. J. Comput. Phys. 447, 2021]
▶ Couple moments with low-rank approximation of g , where f = M + g .
▶ Needs to enforce

∫
g d(x , v) = 0.

▶ Global invariants only.

[L. Einkemmer, C. Lubich. SIAM J. Sci. Comput., 40(5) (2018)]
▶ Add correction λijXiVj to enforce conservation (Lagrange multiplier).
▶ Conserves either global invariants or (a projected version of) conservation laws.
▶ Not able to simultaneously conserve both.

https://doi.org/10.1016/j.jcp.2020.109735
https://doi.org/10.1016/j.jcp.2021.110672
https://doi.org/10.1137/18M1218686


Global vs local conservation

We should not forget the
local conservation law!



Literature



Literature

[F. Casas, N. Crouseilles, E. Faou. M. Mehrenberger. Numer. Math. 135,
2017]
▶ Hamiltonian structure for the Vlasov–Poisson equation.
▶ Used for constructing high-order splitting methods for direct (i.e. not low-rank)

solvers.

[P.J. Morrison. Phys. Lett. A 80:4-5, 1980.]
[J.E. Marsden. A. Weinstein. Physica D. 4:3, 1982]
▶ The rather complicated Hamiltonian structure of Vlasov–Maxwell.

[L.E. J. Comput. Phys. 376, 2019]
▶ Role of conservative methods for integrating the Vlasov equation.
▶ Accurate solution despite large phase space error.

[Ensign]
▶ C++ framework for dynamical low-rank computations.

https://doi.org/10.1007/s00211-016-0816-z
https://doi.org/10.1007/s00211-016-0816-z
https://doi.org/10.1016/0375-9601(80)90776-8
https://doi.org/10.1016/0167-2789(82)90043-4
https://doi.org/10.1016/j.jcp.2018.10.012
https://github.com/leinkemmer/Ensign/tree/development

