
Structure preserving low-rank algorithms for plasma simulations
Part 1: Introduction to dynamical low-rank algorithms

Lukas Einkemmer
University of Innsbruck

Structure-Preserving Scientific Computing and Machine Learning Summer School
and Hackathon, UW Seattle, 2025

Link to slides: http://www.einkemmer.net/training.html

http://www.einkemmer.net/training.html

What is a plasma

Plasma is a state of matter where electrons
and ions are not bound to each other.
▶ A gas heated to sufficiently high

temperature.
▶ An ionized gas rarefied enough such that

recombination is slow.
▶ Electrons moving freely in a metal.

Plasma is the most common state of matter in the universe.

Fusion
In a tokamak fusion reactor magnetic
fields compress and stabilize the plasma.

Promise of emission free and cheap energy
from hydrogen.

Only one fusion reactor with Q > 1.

Plasma systems are inherently
unstable!

Images from https://dx.doi.org/10.1155/2014/940965 and https://tinyurl.com/cmesunobs.

https://dx.doi.org/10.1155/2014/940965
https://tinyurl.com/cmesunobs

Newton’s law

Newton’s law: F = ma with acceleration a = ẍ , mass m, and force F .

Multi-particle system:

ẋi(t) = vi(t), v̇i(t) = F (xi(t))/mi , x(t) ∈ RN , v(t) ∈ RN .

The ith particle is described by position xi , velocity vi , and mass mi .

For practical systems N is extremely large (order of Avogadro constant ≈ 1023).
▶ Even if we could track the position of each particle this is usually not interesting.
▶ Macroscopic quantities (density, momentum density, ...) much more important.

Kinetic description

We introduce a particle-density f (t, x , v) such that∫ x2

x1

∫ v2

v1
f (t, x , v) d(x , v) = number of particles with x ∈ [x1, x2] and v ∈ [v1, v2].

Number of particles is conserved

∂t f (t, x , v) + ∇x ,v ·
(

f (t, x , v)
[

v
a

])
= 0.

Acceleration a = F/m determined by Newton’s law. Yields kinetic equation

∂t f (t, x , v) + v · ∇x f (t, x , v) + F
m · ∇v f (t, x , v) = 0.

Often F self-consistently couples to f (i.e. F depends on f).

Kinetic description

The force field F is not very useful to model collisions. Boltzmann equation:

∂t f + v · ∇x f + F
m · ∇v f = C(f).

First order hyperbolic equation with

Transport: f (t, x , v) = f (0, x − vt, v)
Acceleration: f (t, x , v) = f (0, x , v − tF/m)

Collision: usually only acts in v .

For collisionless problems (i.e. C(f) = 0) particles travel along the characteristics
given by Newton’s law.

Fluid models, such as the Euler equation and Navier–Stokes equation, can be derived
by assuming f (t, x , v) ∝ ρ exp(−(v − u)2/(2T)), i.e. thermodynamic equilibrium.

Vlasov–Poisson equation

Interest from applications such as Tokamak devices (fusion energy), astrophysical
plasmas (space weather, magnetosphere, star formation), radiative transfer, ion
thrusters, laser plasma interaction, etc.
▶ Many large scale codes: GYSELA5D, Vlasiator, ...

In a plasma electromagnetic effects are important: F = qE/m.

Vlasov equation in dimensionless form

∂t f + v · ∇x f − E · ∇v f = 0

coupled to a Poisson problem (Gauss’s law)

E = −∇ϕ with − ∆ϕ = 1 −
∫

f dv .

Vlasov–Maxwell equations include magnetic effects.

Landau damping
Initial value

f (0, x , v) = (1 + α cos(kx)) e−v2/2

(2π)dv /2 , dv number of dimensions in the v -direction.

For α = 0 we have an equilibrium.
Quantity of interest is the electric energy given by 1

2
∫

E 2 dx .
▶ Exponential decay is not expected for a hyperbolic problem.

First described by Landau in 1946 using
linearization.
Fields Medal 2010 (Cédric Villani) for
proving Landau damping and convergence
to equilibrium (for α small). 0 10 20 30 40 50 60

time

10 15

10 13

10 11

10 9

10 7

10 5

10 3

el
ec

tri
c

en
er

gy

L. Landau. J. Phys. (USSR) 10 (1946).
C. Mouhot, C. Villani. Acta Math. 207:1 (2011).

Bump-on-tail instability

Many fusion devices use beam heating (e.g. NBI – neutral beam injection).

This can lead to a kinetic instability.
▶ System is far away from thermodynamic equilibrium.

M.A. Van Zeeland, et al. Nucl. Fusion 61 (2021).

Bump-on-tail instability
To study kinetic dynamics (in almost all situations) requires numerical simulation.
Bump-on-tail instability: f (0, x , v) ∝ e−v2/2 + αe−(v−v0)2/2.

[Video]

Complexity reduction, or why is this a hard problem?

Option 1: direct discretization

Solve the problem by a well optimized method (say splitting+semi-Lagrangian dG).

Numerical challenges:
▶ Six-dimensional phase space (n = 50: 250 GB memory vs n = 200: 1024 TB)
▶ Small scale structures force a sufficiently fine space discretization.

To obtain results for five or six-dimensional problems requires the largest
supercomputers currently available (perhaps more than that).

Simulation with 1500 GPUs and 7231443

grid points on JUWELS Booster:
▶ 2 × 24 AMD EPYC 7402 cores and

4× NVIDIA A100 GPUs per node.
▶ Total of 150 TB of GPU memory.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 1 4 16 64 256 1024

tim
e

 p
er

 s
te

p
 in

 s
e

co
nd

s

number of GPUs

Total
Advection

Communication
E field

L.E., A. Moriggl. Int. J. High Perform. Comput. Appl. 37:2 (2022).

Option 2: Particle methods

If everything else fails, try Monte-Carlo.
Probably still the most widely used method
(especially in physics).

Particle methods have been employed
extensively.
▶ Only x is discretized.
▶ Particles push and field solves are

alternated.

But, suffers from slow convergence,
numerical noise and failure to resolve the
tail of the distribution.

0 5 10 15 20 25 30
time

10 13

10 11

10 9

10 7

10 5

10 3

10 1

el
ec

tri
c

en
er

gy

1k particles/cell
4k particles/cell
8k particles/cell

16k particles/cell
sL cubic spline (32x32)

Complexity reduction

A class of techniques to reduce the degrees of freedom (i.e. complexity) required to
treat a problem.

Data based
▶ Start with data to learn a (not too complex) model from.
▶ But requires a lot of data, unclear how well it generalizes, often not

interpretable.
▶ Examples: Machine learning, POD type methods, etc.

Model based
▶ Starts with a known model (e.g. Vlasov–Poisson equation).
▶ Apply a series of mathematical/numerical operations to reduce the problem.

Option 3: Sparse grids

Sparse grids
[H. Bungartz, M. Griebel. Acta Numer. 13, 2004]

Consider

u : [0, 1]d → R, x 7→
d∏

j=1
exp(−α(xj − 1/2)2)

for which

∥∂x1 . . . ∂xd u∥∞ ≈ (2α)d .

100 101 102 103 104 105

dof

10 6

10 5

10 4

10 3

10 2

10 1

100

er
ro

r

sparse grid (d=1)
sparse grid (d=2)
sparse grid (d=3)
sparse grid (d=4)

dof 2

dof 2/5

sparse grid (d=5)

Why is complexity reduction hard for hyperbolic problems
Advection equation

∂tu(t, x) + v∂xu(t, x) = 0, Ω = [0, 1], u(0, x) = u0(x).

Consider the approximation

u(t, x) =
n∑

i=1
ui(t)ϕi(x).

What is the best basis {ϕi}n
i=1?

Solution lives in
U = {u0(x − α) : α ∈ [0, 1]}

Kolmogorov N-width gives the best error for a basis with n elements

dn(U) = inf
dim(Vn)=n

sup
u∈U

inf
vn∈Vn

∥u − vn∥L2(Ω).

Kolmogorov N-width

Kolmogorov N-width

Kolmogorov N-width

Kolmogorov N-width

Behavior of the error
▶ L∞ error is always O(1)
▶ L2 error is proportional to n−1

Kolmogorov N-width

For smooth u0 we have dn(U) ≤ C exp(−cn) for some constant c.
▶ Proof: Use that Fourier coefficients of a smooth function decay exponentially.

For non-smooth u0 we have only dn(U) ≤ Cn−1/2.
▶ Thus, any fixed basis is very inefficient.

But if we vary the basis in time n = 1 is sufficient as

u(t, x) = 1 · ϕ(t, x), with ϕ(t, x) = u0(t − vt).

Dynamical low-rank approximation

Singular value decomposition

Singular value decomposition for a matrix Aij = g(xi , vj) is given by

A = V SW T ∈ Rn×m

with V ∈ Rn×r , S ∈ Rr×r , W ∈ Rm×r , and r the rank of A.

Low-rank approximation

g(x , v) ≈
∑

ij
Xi(x)SijVj(v).

Orthogonality constraints: ⟨Xi , Xj⟩x = δij , ⟨Vi , Vj⟩v = δij .

Dynamical low-rank approximation
Step 1: We start with a (usually) high-dimensional PDE

Find f (t, ξ) such that ∂t f = RHS(f).

Dynamical low-rank approximation
Step 2: Low-rank approximation with ξ = (x , v)

f (t, x , v) ≈
r∑

i=1

r∑
j=1

Xi(t, x)Sij(t)Vj(t, v), ⟨Xi , Xj⟩x = δij , ⟨Vi , Vj⟩v = δij .

forms a manifold Mr .

Dynamical low-rank approximation
Step 3: Exact flow ∂t f = RHS(f) takes us out of the low-rank manifold.

Dynamical low-rank approximation
Step 3: Exact flow ∂t f = RHS(f) takes us out of the low-rank manifold.

Dynamical low-rank approximation
Step 4: Represent the tangent space T Mr as ḟ =

∑
ij

(
ẊiSijVj + Xi ṠijVj + XiSij V̇j

)
.

Dynamical low-rank approximation
Step 4: Represent the tangent space T Mr as ḟ =

∑
ij

(
ẊiSijVj + Xi ṠijVj + XiSij V̇j

)
▶ A point in the tangent space is specified by Ẋi , Ṡij , V̇j .

Dynamical low-rank approximation
Step 5: Look for ∂t f = P(f)RHS(f) with P(f) the orthogonal projection on the
tangent space.

Dynamical low-rank approximation
Step 5: Look for ∂t f = P(f)RHS(f) with P(f) the orthogonal projection on the
tangent space.
▶ Determine Ẋi , Ṡij , V̇j from

∑
ij

(
ẊiSijVj + Xi ṠijVj + XiSij V̇j

)
= P(f)RHS.

Dynamical low-rank approximation

Dynamical low-rank approximation

f (t, x , v) =
∑

ij
Xi(t, x)Sij(t)Vj(t, v).

Lower-dimensional basis is allowed to vary in time

Low-rank functions (with fixed r) form a manifold with functions in the tangent space
represented as

ḟ =
∑

ij

(
ẊiSijVj + Xi ṠijVj + XiSij V̇j

)
.

This representation is not unique. For example,

Ẋi = Xi , Ṡij = 0 and Ẋi = 0, Ṡij = Sij

gives the same vector in the tangent space.

Gauge conditions
We impose the Gauge conditions ⟨Xi , Ẋj⟩x = 0 and ⟨Vi , V̇j⟩v = 0.
Equation for S

⟨XkVl , ḟ ⟩xv =
∑

ij
⟨XkVl , ẊiSijVj + Xi ṠijVj + XiSij V̇j⟩xv

=
∑

ij
⟨Xk , Ẋi⟩xSij⟨Vl , Vj⟩v +

∑
ij

⟨Xk , Xi⟩x Ṡij⟨Vl , Vj⟩v +
∑

ij
⟨Xk , Xi⟩xSij⟨Vl , V̇j⟩v

= Ṡkl

Equation for X

⟨Vl , ḟ ⟩v =
∑

ij
⟨Vl , ẊiSijVj + Xi ṠijVj + XiSij V̇j⟩v

=
∑

ij
ẊiSij⟨Vl , Vj⟩v +

∑
ij

Xi Ṡij⟨Vl , Vj⟩v +
∑

ij
XiSij⟨Vl , V̇j⟩v

=
∑

i
ẊiSil +

∑
i

Xi Ṡil

Dynamical low-rank approximation

Equations of motion

∂tSij = ⟨XiVj , RHS⟩xv , ODE∑
i

Sij(∂tXi) = ⟨Vj , RHS⟩v −
∑

i
Xi(∂tSij), x dependent PDE∑

j
Sij(∂tVj) = ⟨Xi , RHS⟩x −

∑
j

(∂tSij)Vj . v dependent PDE

We have obtained
▶ A set of partial PDEs for the low-rank factors X , S, V .
▶ The low-rank factors only depend on x , v but not on both (i.e. Xi(t, x), Vj(t, v)

vs f (t, x , v)).
▶ Up to now independent of the specific PDE we want to solve.

Equations of motion for Vlasov–Poisson

We can now substitute

RHS = −v · ∇x f + E (f) · ∇v f with f =
∑
kl

XkSklVl

For example,

⟨Vj , RHS⟩v =
〈
Vj , v 7→ −v · ∇x f + E (f) · ∇v f

〉
v

= −
∑

l
⟨VjvVl⟩v ·

∑
k

Skl∇xXk +
∑

l
E · ⟨Vj∇v Vl⟩v

∑
k

Skl∇xXk

We can now compute this efficiently.
▶ Your choice of time and space discretization

Computational complexity

Memory usage: O(rnd) instead of O(ndx +dv).
▶ Limited by storage of Xi and Vj .

Computational complexity: O(r2nd) instead of O(ndx +dv).
▶ Limited by computation of the coefficients and solution of evolution equations.

Coefficients: c1
jl =

∫
Ωv

vVjVl dv Storage: O(r2) Effort: O(r2ndv)

Integration: ∂tXj = ... Storage: O(rndx) Effort: O(r2ndx)

Dramatic improvement if r is small to moderate.
▶ E.g. dx = dv = 3, n = 200, r = 10 we have 1024 TB vs 160 MB to store two

copies of f .

d = max(dx , dv).

Robustness

In principle, we can now forget about low-rank and implement the new PDEs.

But to obtain equations in Xi and Vj we have to invert S and ST (S∂tX = . . .).

Approximation by truncation of the SVD A ≈ V SW T .

S =

µ1 0 0 0 0
0 µ2 0 0 0
0 0 µ3 0 0
0 0 0 µ4 0
0 0 0 0 µ5

 ≈

 µ1 0 0
0 µ2 0
0 0 µ3

 .

Error vs condition number
▶ If µ4 is large than the error is large.
▶ If µ3 is small than inverting S is ill-conditioned.

Literature

Literature

[O. Koch, C. Lubich. SIAM J. Matrix Anal. Appl., 29(2), 2007]
▶ Dynamical low-rank algorithm for matrix equations, modern mathematical

formulation.

[L.E., C. Lubich, SIAM J. Sci. Comput. 40(5), 2018]
▶ Projector splitting based dynamical low-rank algorithm for Vlasov–Poisson.
▶ Probably the best starting point to get more details.

[L.E., K. Kormann, J. Kusch, R.G. McClarren, J.-M. Qiu. arXiv:2412.05912]
▶ Review article with comparison to other methods and survey of the literature.

https://doi.org/10.1137/050639703
https://doi.org/10.1137/18M116383X
https://arxiv.org/abs/2412.05912

