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What is a plasma

RANGES OF PLASMAS

Plasma is a state of matter where electrons
and ions are not bound to each other.
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» Electrons moving freely in a metal.
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TEMPERATURE
Plasma is the most common state of matter in the universe.




Fusion

In a tokamak fusion reactor magnetic
fields compress and stabilize the plasma.
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Resulting helical magnetic field
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Plasma electric current
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Promise of emission free and cheap energy
from hydrogen.

Only one fusion reactor with @ > 1.

Plasma systems are inherently
unstable!

Images from https://dx.doi.org/10.1155/2014/940965

and https://tinyurl.com/cmesunobs.
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Newton's law

Newton’s law: F = ma with acceleration a = X, mass m, and force F.

Multi-particle system:
xi(t) = vi(t), vi(t) = F(xi(t))/mj, x(t) e RY, v(t) e R".
The ith particle is described by position x;, velocity v;, and mass m;.
For practical systems N is extremely large (order of Avogadro constant ~ 10%3).

» Even if we could track the position of each particle this is usually not interesting.

» Macroscopic quantities (density, momentum density, ...) much more important.



Kinetic description

We introduce a particle-density f(t, x, v) such that

XD %]
/ / f(t,x,v)d(x,v) = number of particles with x € [x1,x2] and v € [vq, v2].
X1 Vi
Number of particles is conserved

Oef(t,x,v)+ Vi - (f(t,x, v) [ : ]) =0.

Acceleration a = F/m determined by Newton's law. Yields kinetic equation

F
Oef(t,x,v) + v - Vi f(t,x,v)+ " V. f(t,x,v)=0.

Often F self-consistently couples to f (i.e. F depends on f).



Kinetic description

The force field F is not very useful to model collisions. Boltzmann equation:

F
8tf—|—vvxf+gvvf:

First order hyperbolic equation with
Transport: f(t,x,v)=f(0,x — vt,v)

Acceleration: f(t,x,v)=f(0,x,v—tF/m)

usually only acts in v.

For collisionless problems (i.e. C(f) = 0) particles travel along the characteristics
given by Newton’s law.

Fluid models, such as the Euler equation and Navier—Stokes equation, can be derived
by assuming f(t,x,v) o< pexp(—(v — u)?/(2T)), i.e. thermodynamic equilibrium.



Vlasov—Poisson equation

Interest from applications such as Tokamak devices (fusion energy), astrophysical
plasmas (space weather, magnetosphere, star formation), radiative transfer, ion
thrusters, laser plasma interaction, etc.

» Many large scale codes: GYSELALD, Vlasiator, ...

In a plasma electromagnetic effects are important: F = gE/m.

Vlasov equation in dimensionless form
Ohf +v-Vif—E-V,f=0

coupled to a Poisson problem (Gauss's law)

E——Vé  with —A(bzl—/fdv.

Vlasov—Maxwell equations include magnetic effects.



Landau damping

Initial value

f(0,x,v) = (1 + acos(kx)) , dy, number of dimensions in the v-direction.

For o« = 0 we have an

Quantity of interest is the electric energy given by %f E? dx.

» Exponential decay is not expected for a hyperbolic problem.

First described by Landau in 1946 using . \(

linearization. - YT\(

Fields Medal 2010 (Cédric Villani) for w YYYWYYWW

proving Landau damping and convergence “ WY\(YY
to equilibrium (for o small). 104 - - - - - !
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L. Landau. J. Phys. (USSR) 10 (1946).
C. Mouhot, C. Villani. Acta Math. 207:1 (2011).



Bump-on-tail instability

Many fusion devices use beam heating (e.g. NBI — neutral beam injection).

This can lead to a kinetic instability.

» System is far away from thermodynamic equilibrium.

M.A. Van Zeeland, et al. Nucl. Fusion 61 (2021).



Bump-on-tail instability

To study kinetic dynamics (in almost all situations) requires numerical simulation.

Bump-on-tail instability: £(0, x, v) o e™¥"/2 4 qe=(v=)*/2,

s st

[Video]




Complexity reduction, or why is this a hard problem?




Option 1: direct discretization

Solve the problem by a well optimized method (say splitting+semi-Lagrangian dG).

Numerical challenges:
» Six-dimensional phase space (n = 50: 250 GB memory vs n = 200: 1024 TB)

» Small scale structures force a sufficiently fine space discretization.

To obtain results for five or six-dimensional problems requires the largest
supercomputers currently available (perhaps more than that).

Total —@— Communication —@—

Simulation with 1500 GPUs and 72%1443 Javecton e Eled
grid points on JUWELS Booster: I

» 2 x 24 AMD EPYC 7402 cores and
4x NVIDIA A100 GPUs per node.

» Total of 150 TB of GPU memory.

time per step in seconds

I I I I
1 4 16 64 256 1024
number of GPUs

L.E., A. Moriggl. Int. J. High Perform. Comput. Appl. 37:2 (2022).



Option 2: Particle methods

If everything else fails, try Monte-Carlo.
Probably still the most widely used method
(especially in physics).

Particle methods have been employed

extensively.

» Only x is discretized.

» Particles push and field solves are
alternated.

But, suffers from slow convergence,
numerical noise and failure to resolve the
tail of the distribution.

— 1k particle:
—— 4k particles/cell  —— sL cubic spline (32x32)
— 8k particles/cell
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Complexity reduction

A class of techniques to reduce the degrees of freedom (i.e. complexity) required to
treat a problem.

Data based
» Start with data to learn a (not too complex) model from.

» But requires a lot of data, unclear how well it generalizes, often not
interpretable.

» Examples: Machine learning, POD type methods, etc.

Model based
» Starts with a known model (e.g. Vlasov—Poisson equation).

» Apply a series of mathematical /numerical operations to reduce the problem.



Option 3: Sparse grids

Sparse grids
[H. Bungartz, M. Griebel. Acta Numer. 13, 2004]

Consider
d
u: [0,1] = R, x [ exp(—alx — 1/2)?)
j=1
for which

18y, .. . O, tlloo ~ (20)°.



Why is complexity reduction hard for hyperbolic problems

Advection equation
Oru(t, x) + voxu(t,x) =0, Q =10,1], u(0, x) = u(x).

Consider the approximation

n

u(t X) Zul(t)¢l( )

i=1

What is the best basis {¢;}7 ;7
Solution lives in
U={’(x—-a): acl0,1]}

Kolmogorov N-width gives the best error for a basis with n elements

()= ity 5B inf, = villizeey.



Kolmogorov N-width




Kolmogorov N-width




Kolmogorov N-width




Kolmogorov N-width

Behavior of the error
» L error is always O(1)

» [ error is proportional to n~

1



Kolmogorov N-width

For smooth u® we have d,(U) < Cexp(—cn) for some constant c.

» Proof: Use that Fourier coefficients of a smooth function decay exponentially.

For non-smooth u® we have only d,(U) < Cn~1/2,
» Thus, any fixed basis is very inefficient.

But if we vary the basis in time n = 1 is sufficient as

u(t,x) =1-¢(t,x), with o(t,x) = u2(t — vt).



Dynamical low-rank approximation




Singular value decomposition

Singular value decomposition for a matrix A; = g(x;, v;) is given by
A=VSWT e R™m

with V e R™" S e R™" W € R™*", and r the rank of A.

Low-rank approximation

g(x,v) ~ Z Xi(x)SijVj(v).

Orthogonality constraints: (Xj, Xj)x = 0j5, (Vi, Vi), = dj;.



Dynamical low-rank approximation

Step 1: We start with a (usually) high-dimensional PDE
Find f(t,¢) such that Otf = RHS(F).



Dynamical low-rank approximation

Step 2: Low-rank approximation with £ = (x, v)
f(t,x,v) ZZX (t,x)S;(t)Vj(t, v), (Xi, Xj)x = 05, (Vi, Vj)y = 8.
i=1j=1
forms a manifold M,.




Dynamical low-rank approximation

Step 3: Exact flow 0;f = RHS(f) takes us out of the low-rank manifold.




Dynamical low-rank approximation

Step 3: Exact flow 0;f = RHS(f) takes us out of the low-rank manifold.




Dynamical low-rank approximation

Step 4: Represent the tangent space T M, as f = >ij (XiSij\/j + X,-S,-j\/j + X;Sjj \/J)




Dynamical low-rank approximation

Step 4: Represent the tangent space T M, as f = >ij <Xi5,‘j\/j + X,-S,-J-\/J- + X;Sjj \/J)
» A point in the tangent space is specified by X, S;J-, \/J




Dynamical low-rank approximation

Step 5: Look for 0:f = P(f)RHS(f) with P(f) the orthogonal projection on the
tangent space.




Dynamical low-rank approximation

Step 5: Look for 0:f = P(f)RHS(f) with P(f) the orthogonal projection on the
tangent space.
> Determine X;, 5, V; from 52 (XiS;V; + Xi S5V + XS V;) = P(f)RHS.




Dynamical low-rank approximation

Dynamical low-rank approximation

f(t,x,v) = ZX,-(t,X)S,-j(t)\/j(t, v).

Lower-dimensional basis is allowed to vary in time

Low-rank functions (with fixed r) form a manifold with functions in the tangent space
represented as

F=> (XiSUVj + X;5;V; +X,~5,-j\'/j) ,

ij
This representation is not unique. For example,
X,':X;, SUZO and X,'ZO, SU:SU

gives the same vector in the tangent space.



Gauge conditions

We impose the Gauge conditions <X,-,XJ->X =0 and (V, VJ>V =0.
Equation for S

(Xi Vi, Pl = Z<xkv,,xsu A XiSVi 4 XiSi Vi)

_ZXk’ X 'J Vlv J +ZXI<7 XSij<Vla Vj>v+Z<Xk7X

i i

= 5k/
Equation for X

(Vi )y = S (Vi XiSi V) + XiS5 Vi + XiSi Vi)
ij

= ZXiSij“/l, Vi)y + ZXiSij<V/, Vi) + ZX,—S,-J-<\/,, \/J>,,

=Y XiSi+>_ XS

>X5fj<v/7 \/_j>v



Dynamical low-rank approximation

Equations of motion

8t5ij = < 'Vjv >XV7 ODE
Z Sij(0e X; Vi, v — ZX,-(@tS,-j), x dependent PDE
Zsij t V) = (X, Ix — Z(atsij)\/j- v dependent PDE
Jj J

We have obtained
» A set of partial PDEs for the low-rank factors X, S, V.

» The low-rank factors only depend on x, v but not on both (i.e. Xj(t,x), Vj(t,v)
vs f(t, x, v)).

» Up to now independent of the specific PDE we want to solve.



Equations of motion for Vlasov—Poisson

We can now substitute

RHS = —v - Vi f + E(f) -V, f with f:ZXkSkIVI
Kl

For example,

(Vi,RHS)y = (Vj,v s —v - Vif + E(f) -V f),

== (VW) - > SuViXe + D> E-(ViVu Vi) D SiViXi
i k I P

We can now compute this efficiently.
» Your choice of time and space discretization



Computational complexity

Memory usage: O(rn?) instead of O(n%Fdv).
» Limited by storage of X; and V.

Computational complexity: O(r?n?) instead of O(n%+d).
» Limited by computation of the coefficients and solution of evolution equations.

Coefficients: (:J-l, :/ vV;Vidv Storage: O(r?) Effort: O(r?n?)

Integration: O Xj = ... Storage: O(rn%) Effort: O(r?n%)

2

Dramatic improvement if r is small to moderate.

» Eg d.=d, =3, n=200, r =10 we have 1024 TB vs 160 MB to store two
copies of f.

d = max(dx, dv).



Robustness

In principle, we can now forget about low-rank and implement the new PDEs.
But to obtain equations in X; and V; we have to invert S and ST (S9:X =...).

Approximation by truncation of the SVD A~ VSWT.

wr 0 0 0 O
0 o 0 0 O w0 0
S={ 0 0 w3 0 O ~ 0 wur O
0 0 O pus O 0 0 w3

0 0 0 0 us

Error vs condition number
» If 114 is large than the error is large.

» If 13 is small than inverting S is ill-conditioned.
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