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Introduction

Understanding hardware is important to understand performance.



Introduction

Understanding hardware is important to understand performance.

▶ Make a program finish sooner/ability to solve larger problems.
▶ Influences how we think about and design numerical algorithms.
▶ Understand the performance of an algorithm before we start implementing it.
▶ Judge how optimized our implementation is.

Should we not have considered this all along?



Introduction

Understanding hardware is important to understand performance.

Should we not have considered this all along?
▶ Understanding hardware is increasingly important to obtain efficient

algorithms.



Simple example
Second order
for i in arange(1,N-1):

for j in arange(1,N-1):
out[j+i*N] = inn[j+i*N] + alpha*(inn[j-1+i*N] - \

2.0*inn[j+i*N] + inn[j+1+i*N])

Fourth order
for i in arange(1,N-1):

for j in arange(1,N-1):
out[j+i*N] = inn[j+i*N] + alpha*( \

-1./12.*inn[j-2+i*N] + 4./3.*inn[j-1+i*N] \
-5./2.*inn[j+i*N] + 4./3.*inn[j+1+i*N] \

-1./12.*inn[j+2+i*N]);

Code
python heat.py
Walltime (2ndord): 15.598
Walltime (4thord): 24.250



Simple example in C++

Second order
for(int i=1;i<N-1;i++)

for(int j=1;j<N-1;j++)
out[j+i*N] = in[j+i*N] + alpha*(in[j-1+i*N]

- 2.0*in[j+i*N] + in[j+1+i*N]);

Timing
g++ -O3 heat.cpp
./a.out
Walltime (2ndord): 0.0067
Walltime (4thord): 0.0066

Both methods give the same performance.



A crash course in computer hardware



Components of a computer

CPU (central processing unit) performs
arithmetic operations, conditionals, loops.

Memory stores data used for processing
(main memory, caches, disk).

Memory

memory bus

CPU
Control unit

Arithmetic logical unit

Cache

CPU and main memory is connected via the memory bus.



CPU

The CPU executes a sequence of instructions (referred to as machine code).

Example of a vastly simplified assembly/machine code
mov 0x38AF2 r1
mov 0xA03DD r2
add r1 r2
mov r2 0x38AF2

Instructions can be grouped as follows
▶ memory instructions (write or read from main memory)
▶ arithmetic operations on registers
▶ control instructions (comparisons, jumps)

Compiler explorer https://godbolt.org/

https://godbolt.org/


CPU performance

CPU operates using a clock rate.
▶ One elementary operation is executed in each clock cycle.

Arithmetic performance is usually measured in floating point operations per second
(FLOPS)
▶ amount of arithmetic operations that can (theoretically) be performed per second

A 3 GHz CPU that can perform one floating point operation per cycle has a
performance of 3 GFLOPS.



Moore’s law

Moore’s law
The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate can
be expected to continue, if not to increase. Over the longer term, the rate of
increase is a bit more uncertain, although there is no reason to believe it will
remain nearly constant for at least 10 years. – G. Moore, 1965

or the number of transistors per unit area doubles every 2 years.

In popular culture a different version has prevailed: Single threaded performance
doubles every four years.



CPU development
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Modern CPUs

Increasing clock frequency has not been viable for a while
▶ power dissipation scales as the frequency squared
▶ but transistors still get smaller

Modern CPUs look more like this.

Multiple CPUs on the same chip
▶ usually the sequential execution units are

referred to as cores
▶ CPUs with 16 cores are quite common now

Core

Memory

memory bus

Core

Core Core

CPU



Vectorization

Each core can perform vector operations in a single clock cycle
▶ 256 bit registers (4 double, 8 floats)
▶ fused multiply add

Vectorization is only possible if the CPU supports that specific instruction
▶ ideally handled by the compiler
▶ OpenMP includes support for vectorization

Types of parallelism
▶ Vectorization is single instruction multiple data (SIMD)
▶ Core level parallelism is multiple instruction multiple data (MIMD)



Performance of a modern CPU

The theoretically achieved FLOPS are calculated as follows

(3 GHz) · (16 cores) · (4 SIMD) · (2 fused multiply add) · (2 ALUs)
= 768 GFLOPS

Factor of 256 in performance if parallelization is fully utilized.



Memory performance

Memory bandwidth is usually measured in Bytes transferred per second (GB/s).
▶ Amount of data that can (theoretically) be transferred to or from memory per

second.

Typical value on modern computer systems is 100 GB/s.

Latency is also important (measured in seconds)
▶ Time it takes between a memory request is started until the data can be used by

the CPU.

Typical value on modern computer systems is 50 ns.
▶ corresponds to a transfer of 5kB.



Compute bound vs memory bound

Memory bandwidth: 100 GB/s means we can transfer 12G double precision
floating point numbers per second.

Compare to 768G additions or multiplications per second.

Let us consider multiplying a vector by a scalar
for(int i=0;i<n;i++)

y[i] = 3*x[i]

Requires one memory read and one memory write per floating point operation.
▶ flop/byte ratio is 0.125 (≪ than hardware flop/byte ratio of 7.68)

This is a memory bound problem.



Compute bound vs memory bound

A problem is compute bound if the performance is dictated by how many arithmetic
operation the CPU can perform.
▶ numerical quadrature, solving dense linear system (LU), Monte Carlo methods, ...

A problem is memory bound if the performance is dictated by the bandwidth of main
memory.
▶ stencil codes, solving sparse linear systems, FFT, ...
▶ performance measured in achieved GB/s

How many memory instructions?
for(int i=0;i<n-1;i++)

y[i] = x[i+1] - x[i];



Memory hierarchy

FLOPS have increased dramatically but memory speed has lagged behind.
▶ there is a cost, capacity, speed trade-off involved

The result is a memory hierarchy
▶ Caches on the CPU (fast, tens of megabytes)
▶ Main memory (medium speed, tens of gigabytes)
▶ Disk storage (slow, terabytes)

Caches are usually further divided
▶ Modern CPUs usually have L1, L2, L3 cache
▶ Caches are completely transparent to the programmer



Caches

Knowledge of how caches work is important for performance.
Caches transfer data in chunks of fixed size (so-called cache lines)
▶ usually 64-256 bytes in size (8-32 doubles)

read

cache hit cache miss

cache miss

removal from cache

Cache line 0 Cache line 1 Cache line 2 Cache line 3

Value in cache

Value not in cache

First read of any byte in a cache line transfers the entire cache line.



Memory access pattern

// Access with stride 1
for(int i=0;i<n;i++)

out[i] = in[i];
cache miss

Cache line 0 Cache line 1 Cache line 2 Cache line 3

cache hits

cache miss (perhaps)

cache hits

// Access with stride 6
for(int j=0;j<6;j++)

for(int i=0;i<n/6;i++)
out[j+6*i] = in[j+6*i];

read

Cache line 0 Cache line 1 Cache line 2 Cache line 3

cache miss

cache miss



Latency

Latency – how long the CPU has to wait between issuing a memory request and
receiving the first byte – is an important performance consideration.
▶ There are physical limitations when reducing latency

Modern CPUs employ a range of techniques to hide latency.

Prefetching tries to load data that is likely used next into the cache (before the actual
memory instruction is issued)
▶ Particularly efficient for problems where memory locations close together are

accessed in sequence

Instruction Level Parallelism (ILP) tries to skip instructions that still wait for
memory.



NUMA domains

But many systems are dual or quad socket now.

CPU

Memory Memory

memory bus memory bus

CPU

CPU CPU

CPU CPU

CPU CPU

Socket 0 Socket 1

All cores can access the entire memory but speed might differ depending on which
memory modules are accessed.
▶ Non uniform memory access (NUMA)
▶ Cores are grouped into NUMA domains

Determine NUMA domains: numactl --hardware



First touch

For best performance memory has to be placed ’close’ to where it is used.
▶ Neither C++ nor OpenMP provides a way to directly do that
▶ This might not necessarily be desirable anyhow

First touch principle: A memory location is mapped close to the core that first
touches (reads or writes) it.

Different parts of an array can be placed on different NUMA domains.



A note on optimization

Modern CPUs are complicated.
▶ A basic understanding is vital but often measurement is necessary.

As a rule of thumb we pay the following penalty (in clock cycles)

Operation cost in cycles
arithmetics 1
L1 hit 1-10
function call 10-20
L3 hit 40
sin/cos 100
memory 200
disk 105

Exact numbers depend on the specific architecture.



Back to the simple example

Second order (17 arithmetic operations, 2 memory operations)
out[j+i*N] = inn[j+i*N] + alpha*(inn[j-1+i*N] - \

2.0*inn[j+i*N] + inn[j+1+i*N])

Flop/byte ratio is 1.1.

Fourth order (28 arithmetic operations, 2 memory operations)
out[j+i*N] = inn[j+i*N] + alpha*( \

-1./12.*inn[j-2+i*N] + 4./3.*inn[j-1+i*N] \
-5./2.*inn[j+i*N] + 4./3.*inn[j+1+i*N] \

-1./12.*inn[j+2+i*N]);

Flop/byte ratio is 1.8.

Performance is only dictated by memory bandwidth.
▶ Both ratios are significantly below the hardware flop/byte ratio.
▶ Higher order space discretization is practically for free.



Supercomputing



Use case

Five-dimensional phase space (best case)
▶ n = 100: 160 GB of memory
▶ n = 400: 163 TB of memory

Six-dimensional phase space (best case)
▶ n = 50: 250 GB of memory
▶ n = 200: 1024 TB of memory

Requires significantly more memory/computational power than a single
computer can provide.



Cluster

Supercomputers are build by connecting many CPUs over a network.
▶ Modern supercomputers are build by connecting (via a network) a large number of

’commodity computers’.

Memory
CPU CPU

CPU CPU

Memory
CPU CPU

CPU CPU

Memory
CPU CPU

CPU CPU

Memory
CPU CPU

CPU CPU

network

Communication over a network using the message passing interface (MPI).



Data distribution

Most scientific computing takes place on a
domain Ω ⊂ Rn.
▶ We often have local data dependency

(e.g. differential operators)
▶ Domain is divided into p (number of

processes) usually equally sized parts



Data distribution

The time loop of a typical implementation
▶ send/receive boundary data from neighboring processes (at inter-process

boundaries)
▶ perform the computation (independent on each process)
▶ repeat



Performance

Performance is dictated to a large extent by how much data is communicated.

FFT: to compute a Fourier coefficient

ûk = ∆x
∑

i
u(xi) exp(ikxi)

requires the knowledge of u at every grid point xi – global data dependency.

Spline interpolation: Solving the linear systems to obtain the spline introduces a
global data dependency.

Global data dependency requires that each process sends data to each other process
(All-to-all communication).



Global communication
Global communication destroys performance.
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Local communication

Supercomputers favor algorithms that have local communication patterns.
▶ The larger the number of processors the more advantage results from using local

algorithms.

For semi-Lagrangian simulation the most well known local algorithms are
▶ Lagrange interpolation
▶ Semi-Lagrangian discontinuous Galerkin approach

Work has been done on localizing spline interpolation.

N. Crouseilles, G. Latu, E. Sonnendrücker. J. Comput. Phys. 228:5, 2009.



Communication

Typical communication pattern for a
Vlasov–Poisson solver.
▶ Semi-Lagrangian advection: local

communication
▶ Computing the charge density:

reduction
▶ Poisson solver: all-to-all for a subset

of processors.
▶ Electric field distribution: broadcast.

advection (local communication) computation of charge density (MPI Reduce)

FFT (all-to-all communication on subspace) electric field distribution (MPI Bcast)



Scaling
Weak scaling for a discontinuous Galerkin based Vlasov–Poisson solver.
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Massively parallel architectures



Why massively parallel architectures

CPUs are built to accommodate a wide range of applications and environments. E.g.
programs
▶ that are not yet or can not be parallelized
▶ with very irregular memory access
▶ with highly variable workload

This general purpose architecture has a performance cost for scientific codes that
are usually
▶ very well parallelizable
▶ have highly regular memory access
▶ perform the same operations over and over again



CPUs vs GPUs

GPUs (graphic processing units) are massively parallel chips (> 2000 CUDA cores)

Best suited for computations with high arithmetic intensity or predictable memory
access patterns
▶ many scientific codes fall into this category

Picture from NVIDIA (CC).

https://commons.wikimedia.org/wiki/File:Cpu-gpu.svg


CPUs vs GPUs

GPUs are assumed to be more difficult to program.
▶ But remember getting good performance from modern CPUs is also difficult

Parallelization is important even on CPUs.
▶ Even memory bound problems on CPUs require some parallelization.



CPUs vs GPUs (DGEMM)
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Software aspects



Semi-Lagrangian dG scheme on GPUs

On GPUs the choice of the algorithm is crucial.
Semi-Lagrangian discontinuous Galerkin methods have the advantage of
completely local data dependency.
Semi-Lagrangian discontinuous Galerkin is not just a stencil code
▶ non-aligned and (somewhat) unpredictable memory access;
▶ non-uniform degrees of freedom.

Performance results:

GPUs 1 4
TitanV 412 GB/s 0.98 TB/s
V100 453 GB/s 1.60 TB/s
A100 729 GB/s 2.44 TB/s

Implementation achieves 61%/73%/68% of peak performance.
Single GPU node outperforms entire LEO4 cluster! (96 CPUs)



Semi-Lagrangian dG scheme on GPUs
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SLDG software package
SLDG software package (MIT license)
▶ https://bitbucket.org/leinkemmer/sldg

Architecture

MPI communication

CUDA driver 
(advection, boundary transfer) 

OpenMP driver 
(advection, boundary transfer) 

Application

Multiple GPUs NUMA domains/Cache blocking 

Blocks D
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n 
 

All levels are independent.

https://bitbucket.org/leinkemmer/sldg


Some details

No reason why you can not call a CUDA kernel on the CPU.
#pragma omp parallel for schedule(static)
for(int i_omp=0;i_omp<gdim[2];i_omp++) {

for(int iy=0;iy<gdim[1];iy++) {
...
translate<dx,dv,dim,o>(...);

Writing good GPU code is also beneficial on the CPU.

For something more general: cupla library.
▶ Used e.g. in the PIConGPU code.

Good reasons for keeping the driver code separate
▶ Cache blocking on the CPU
▶ Boundary transfer on multiple GPU nodes



Some details

C++ templates are extensively used in performance critical code.
▶ Number of dimensions in x and v
▶ Order of the dG approximation

More important on the CPU.

Performance results for 4th order method (one node with 4x A100 on Juwels Booster)

dim dof without NVLink with NVLink
2x2v 22024402 1821 GB/s 2437 GB/s
2x3v 722144272 1202 GB/s 2567 GB/s
3x3v 364722 859 GB/s 2052 GB/s

L.E., A. Moriggl. arXiv: 2110.14557.



GPU based supercomputing

The fastest supercomputers in the
world are almost all GPU based.
▶ Performance and power efficiency

of GPUs drives this development.

We are at exascale (1018 operations/s).
Frontier at Oak Ridge National Laboratory

▶ 37632 GPUs
▶ 1.1 EFlop/s and 9.2 PBytes of memory

Simulation with 1500 GPUs and 7231443

grid points on JUWELS Booster:
▶ 2 × 24 AMD EPYC 7402 cores and

4× NVIDIA A100 GPUs per node.
▶ Total of 150 TB of GPU memory.
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Time step size

On distributed memory systems there is a penalty for using larger time steps.
▶ More data needs to be communicated in each step.

No more than 50% overhead in SLDG.
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Single vs double precision

Single precision results in a reduction in
memory and an increase in performance
by a factor of 2.
▶ In many cases little difference in

accuracy.
▶ Some care in the implementation is

required.
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Mixed precision computations

In each cell we store c0, . . . , cp where

u(x) =
p∑

k=0
ckpk(x).

For smooth solutions

c0 = O(1), c1 = O(h), . . . , cp = O(hp)

Store c0 to cm in double and cm+1 to cp in single precision.
▶ Can be considered a lossy compression scheme.
▶ Exploits the particular structure of the dG approximation.
▶ How does half-precision fit in?



Mixed precision computations

Of particular importance
▶ c0 is stored in double precision;
▶ c1, . . . , cp is stored in single precision.

Since
▶ charge is conserved up to double precision;
▶ memory usage is significantly reduced.

NVIDIA K80

order # double bandwidth speedup memorydown
4 4 137.9 GB/s – –
4 1 130.1 GB/s 1.51 1.60
4 0 142.5 GB/s 2.07 2.00

L.E., IEEE HPCS 2016.



Ensign



Ensign

Ensign is a framework for implementing dynamical low-rank algorithm on modern
hardware systems.
▶ Provides a collection of structures and functions to easily implement dynamical

low-rank approximation.
▶ At the moment support for multi-core CPUs and CUDA capable GPUs.
▶ Uses highly optimized linear algebra routines behind the scenes (Intel MKL,

cuBLAS, ...).
▶ Space and time discretization is left to the user.

Ensign is still under heavy development (MIT license)
▶ https://github.com/leinkemmer/Ensign

F. Cassini, L.E. arXiv:2110.13481.

https://github.com/leinkemmer/Ensign


6D Vlasov simulation
A 3+3 dimensional two-stream instability with r = 5, r = 10, r = 15, r = 20 using
the Ensign framework (https://github.com/leinkemmer/Ensign).

Dense linear algebra is very efficient on GPUs.
▶ For 1283 × 1283 grid points and r = 10 simulation time on the GPU is 20 min.

https://github.com/leinkemmer/Ensign
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