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Nonlinear Landau damping

Small scales in phase space are a common feature of kinetic simulation.



Numerical challenges

Small scale structures force a sufficiently fine space discretization.

The phase space is up to six-dimensional.
▶ n = 50 250 GB memory (workstation)
▶ n = 100 16 TB memory (local cluster)
▶ n = 200 1024 TB memory (largest supercomputer)

We need a numerical method
▶ for which stability is not dictated by vτ < h
▶ that does not introduce additional memory requirements
▶ that is scalable to large HPC systems
▶ that does not introduce too much numerical diffusion



High-performance computing

To obtain results for five or six-dimensional problems requires the largest
supercomputers currently available (perhaps more than that).

Simulation using ≈ 1500 GPUs and 7231443 grid points.

JUWELS Booster:
▶ 2 × 24 AMD EPYC 7402

cores and 4× NVIDIA A100
GPUs per node.

▶ Total of 150 TB of GPU
memory.

▶ 4× Mellanox HDR200
InfiniBand ConnectX 6 (200
Gbit/s each).  0
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Dimension reduction for the Vlasov equation
Fundamental problem of Eulerian Vlasov solvers is that effort scales as O(ndx +dv ).
▶ Curse of dimensionality

Particle methods have been employed
extensively.
▶ Only x is discretized.
▶ Particles push and field solves are

alternated.
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Sparse grids
▶ Have problems resolving Gaussians.
▶ regularity is an issue as ∥∂m

v f (t, ·, ·))∥ ∝ tm.
E. Camporeale et al., 198, Comput. Phys. Commun., 2016.
K. Kormann, E. Sonnendrücker, Sparse Grids and Applications. 2016.



Dynamical low-rank approximation



Singular value decomposition

Singular value decomposition for a matrix Gij = g(xi , vj) is given by

G = V SW T ∈ Rn×m

with V ∈ Rn×r , S ∈ Rr×r , W ∈ Rm×r , and r the rank of G .

Low-rank approximation

g(x , v) ≈
∑

ij
Xi(x)SijVj(v).

Orthogonality constraints: ⟨Xi , Xj⟩x = δij , ⟨Vi , Vj⟩v = δij .

Why do we think that low-rank works any better?



Dynamical low-rank approximation

Dynamical low-rank approximation

F (f̃(t̄ ))

∂tf̃(t̄ )

M

Tf̃(t̄ )M

f̃(t)

f̃(t̄ )

Advantages: method does not leave manifold, analyze DLR without discretization,
better stability properties.
O. Koch, C. Lubich. SIAM J. Matrix Anal. Appl., 29(2), 2007.
J. Kusch, L.E., G. Ceruti. arXiv:2107.07282.



Dynamical low-rank approximation

Dynamical low-rank approximation

f (t, x , v) =
∑

ij
Xi(t, x)Sij(t)Vj(t, v).

Low-rank functions (with fixed r) form a manifold with functions in the tangent space
represented as

ḟ =
∑

ij

(
ẊiSijVj + Xi ṠijVj + XiSij V̇j

)
.

This representation is not unique. For example,

Ẋi = Xi , Ṡij = 0 and Ẋi = 0, Ṡij = Sij

gives the same vector in the tangent space.



Gauge conditions
We impose the Gauge conditions ⟨Xi , Ẋj⟩x = 0 and ⟨Vi , V̇j⟩v = 0.
Equation for S

⟨XkVl , ḟ ⟩ =
∑

ij
⟨XkVl , ẊiSijVj + Xi ṠijVj + XiSij V̇j⟩xv

=
∑

ij
⟨Xk , Ẋi⟩xSij⟨Vl , Vj⟩v +

∑
ij

⟨Xk , Xi⟩x Ṡij⟨Vl , Vj⟩v +
∑

ij
⟨Xk , Xi⟩xSij⟨Vl , V̇j⟩v

= Ṡkl

Equation for X

⟨Vl , ḟ ⟩ =
∑

ij
⟨Vl , ẊiSijVj + Xi ṠijVj + XiSij V̇j⟩xv

=
∑

ij
ẊiSij⟨Vl , Vj⟩v +

∑
ij

Xi Ṡij⟨Vl , Vj⟩v +
∑

ij
XiSij⟨Vl , V̇j⟩v

=
∑

i
ẊiSil +

∑
i

Xi Ṡil



Dynamical low-rank approximation
Equations of motion

∂tSij = ⟨XiVj , RHS⟩, ODE∑
i

Sij(∂tXi) = ⟨Vj , RHS⟩ −
∑

i
Xi(∂tSij), x dependent PDE∑

j
Sij(∂tVj) = ⟨Xi , RHS⟩ −

∑
j

(∂tSij)Vj . v dependent PDE

In principle we can substitute

RHS = −v · ∇x f + E (f ) · ∇v f .

But
▶ The equations couple S, X , and V ;
▶ To obtain equations in Xi and Vj we have to invert S and ST.



Robustness

Back to the SVD
A ≈ V SW T .

Approximation by truncation

S =


µ1 0 0 0 0
0 µ2 0 0 0
0 0 µ3 0 0
0 0 0 µ4 0
0 0 0 0 µ5

 ≈

 µ1 0 0
0 µ2 0
0 0 µ3

 .

Error vs condition number
▶ If µ4 is large than the error is large.
▶ If µ3 is small than inverting S is ill-conditioned.



Projector splitting integrator

Vlasov–Poisson equation constrained to the low-rank manifold

∂t f = P(f )RHS = P(f ) (−v · ∇x f + E (f ) · ∇v f ) ,

where P(f ) is the orthogonal projector onto the tangent space.

We have

P(f )RHS =
∑

ij
(∂tXiSijVj + Xi∂tSijVj + XiSij∂tVj)

=
∑

ij
(∂t(XiSij)Vj − Xi∂tSijVj + Xi∂t(SijVj))

=
∑

j
⟨Vj , RHS⟩xVj −

∑
ij

Xi⟨XiVj , RHS⟩xv Vj +
∑

i
Xi⟨Xi , RHS⟩v



Projector splitting integrator

We can write
P(f )g = PV g − PV PX g + PX g ,

where PX and PV are the orthogonal projectors on X = span{Xi : i = 1 . . . r} and
V = span{Vj : j = 1 . . . r}.

This suggests a splitting.

C. Lubich and I.V. Oseledets. BIT Numer. Math. 54(1) 2014.



K step

Our goal is to solve
∂t f = PV (−v · ∇x f + E (f ) · ∇v f ) .

We rewrite the solution using Kj as follows

f (t, x , v) =
∑

j
Kj(t, x)Vj(t, v), with Kj(t, x) =

∑
i

Xi(t, x)Sij(t).

This yields∑
j

∂tKj(t, x)Vj(t, v) +
∑

j
Kj(t, x)∂tVj(t, v)

=
∑

j

〈
Vj(t, ·), v 7→ −v · ∇x f (t, x , v) + E (f )(t, x) · ∇v f (t, x , v)

〉
v Vj(t, v).



K step

The solution is given by Vj(t, v) = Vj(0, v) and

∂tKj(t, x) =
〈
Vj , −v 7→ v · ∇x f (t, x , v) + E (f )(t, x) · ∇v f (t, x , v)

〉
v

= −
∑

l
⟨VjvVl⟩v · ∇xKl(t, x) +

∑
l

E · ⟨Vj∇v Vl⟩v Kl(t, x)

For the first subflow of the projector splitting algorithm we thus obtain

∂tKj(t, x) = −
∑

l
c1

jl · ∇xKl(t, x) +
∑

l
c2

jl · E (K )(t, x)Kl(t, x),

The coefficients are determined as follows (V = V 0)

c1
jl =

∫
Ωv

vV 0
j V 0

l dv , c2
jl =

∫
Ωv

V 0
j (∇v V 0

l ) dv .

Do not neglect the cost of computing the coefficients.



K step

The equation is formulated with K and V (neither X nor S are explicitly involved).

To proceed with the next step in the algorithm we have to obtain X and S.
▶ Why is this approach then advantageous?

The X and S are recovered from K by a QR decomposition as

Kj =
∑

i
XiSij

Well defined even for singular K = [K1, . . . , Kr ] and gives automatically the (almost
correct) orthogonality relation for the Xi .
▶ Result is a robust approximation even if the rank r is chosen too large.

Note that S is not necessarily diagonal.



S step

Our goal is to solve

∂t f = −PV PX (−v · ∇x f + E (f ) · ∇v f ) .

The solution is Xi(t, x) = Xi(0, x), Vj(t, v) = Vj(0, v), and

∂tSij =
〈
X 1

i V 0
j , (x , v) 7→ (v · ∇x − E (S)(t, x) · ∇v )

∑
kl

X 1
k (x)Skl(t)V 0

l (v)
〉

xv

=
∑
kl

(
c1

jl · d2
ik − c2

jl · d1
ik [E (S(t))]

)
Skl(t)

with
d1

ik [E ] =
∫

Ωx
X 1

i EX 1
k dx , d2

ik =
∫

Ωx
X 1

i (∇xX 1
k ) dx .

The S step integrates backward in time.



Electric field (S step)

The electric field E (S(t)) is computed from

−∆ϕ = 1 −
∑

ij
X 1

i (x)Sij(t)
∫

V 0
j dv , E = −∇ϕ.

In practice we usually approximate E by En (first order) or En+1/2 (second order).
▶ En+1/2 has to be approximated (to first order) in an actual implementation.



L step

Our goal is to solve
∂t f = PX (−v · ∇x f + E (f ) · ∇v f ) .

We define

f (t, x , v) =
∑

i
Xi(t, x)Li(t, v), with Li(t, v) =

∑
j

Sij(t)Vj(t, v).

The solution is Xi(t, x) = Xi(0, x) and

∂tLi(t, v) =
〈
X 1

j , x 7→ (−v · ∇x + E (L)(t, x) · ∇v )
∑

k
X 1

k Lk(t, v)
〉

x

=
∑

k
d1

ik [E (L(t, ·))] · ∇v Lk(t, v) −
∑

k
(d2

ik · v)Lk(t, v).

Then S and V are recovered from L by a QR decomposition.



Dynamical low-rank algorithm

First order Lie splitting

1. Solve ∂tKj = −
∑

l c1
jl · ∇xKl +

∑
l c2

jl · E (K )Kl with initial value
∑

i X 0
i S0

ij up to
time ∆t to obtain K 1

j .

2. Perform a QR decomposition of K 1
j to obtain X 1

i and S1
ij .

3. Solve ∂tSij =
∑

kl

(
c1

jl · d2
ik − c2

jl · d1
ik

)
Skl with initial value S1

ij up to time ∆t to
obtain S2

ij .

4. Solve ∂tLi =
∑

k d1
ik · ∇v Lk −

∑
k(d2

ik · v)Lk equation with initial value
∑

j S2
ijV 0

j up
to time ∆t to obtain L1

i .

5. Perform a QR decomposition of L1
i to obtain V 1

j and S3
ij .

Spectral and semi-Lagrangian methods can still be employed.

L.E., C. Lubich, SIAM J. Sci. Comput. 40(5), 2018.



Computational complexity

Computational complexity: O(r2nd) instead of O(ndx +dv ).
▶ Limited by computation of the coefficients and solution of evolution equations.

Memory usage: O(rnd) instead of O(ndx +dv ).
▶ Limited by storage of Xi and Vj .

Coefficients: c1
jl =

∫
Ωv

vV 0
j V 0

l dv Storage: O(r2) Effort: O(r2ndv )

Integration: ∂tKj = ... Storage: O(rndx ) Effort: O(r2ndx )

d = max(dx , dv ).



Implementation

Discretized system
f = XSV T

with
fkl = f (t, xk , vl), Xki = Xi(t, xk), Vlj = Vj(t, vl).

In matrix form

X (t) =

 X1(t, x1) · · · Xr (t, x1)
... . . . ...

X1(t, xn) · · · Xr (t, xn)

 , V (t) =

 V1(t, v1) · · · Vr (t, v1)
... . . . ...

V1(t, vm) · · · Vr (t, vm)

 .

K step (one-dimensional case)

∂tK = −A∂x K (c1)T + diag(En)K (c2)T ,

where A∂x is the discretization of the spatial derivative.



Why does dynamical low-rank work?



Linear Landau damping

Low-rank approximation with 256 grid points in each direction.
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Plasma echo

Plasma echo with 512 × 4096 grid points.
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Reason 1: DLR does not need smoothness

The low-rank algorithm is able to resolve filamentation. Consider

∂t f (t, x , v) + v · ∇x f (t, x , v) = 0, f (0, x , v) = eikxe−v2
.

Then
f (t, x , v) = eik(x−vt)e−v2 = eikxe−ikvte−v2

.

This is still rank 1.

Thus, smoothness in v is not necessary for low-rank approximations.



Reason 2: DLR resolves dynamics close to the linear regime

We consider a small perturbation around the equilibrium f (0)(v)

f (t, x , v) = f (0)(v) + f (1)(t, x , v), E (t, x) = 0 + E (1)(t, x).

This results in the linearized Vlasov equation

∂t f (1)(t, x , v) + v · ∇x f (1)(t, x , v) + E (1)(x) · ∇v f (0)(v) = 0.

Dynamics (e.g. for Landau damping m = 1)

f (0)(v) +
m∑

k=1
f̂ (1)
ki

(0, v)eiki x
time evolution

−−−−−−−−−→ f (0)(v) +
m∑

k=1
f̂ (1)
ki

(t, v)eiki x

which is at most rank m + 1.
L.E., A. Ostermann, C. Piazzola, J. Comput. Phys. 403, 2020.



Reason 3: Certain limits have a low-rank structure

Collisional kinetic equations have a diffusive or fluid limit

∂t f (t, x , v)+v · ∇x f (t, x , v) = 1
ϵ

(feq(f ) − f )
ϵ→0

−−−−→ Euler equations

In the incompressible case the limit is approximately low-rank.
▶ Compressible case requires a different low-rank approximation.

Rigorous results available for linear Boltzmann equation.
▶ Based on a Chapman–Enskog expansion of the low-rank

algorithm.

Z. Ding, L.E., Q. Li. SIAM J. Numer. Anal. 59(4) 2021.
L.E., J. Hu, L. Ying. SIAM J. Sci. Comput. 43(5) 2021.



Why does low dynamical low-rank work?

In general, it is not well understood under which conditions a kinetic problem
admits a low-rank representation.



Alfvén waves



Strongly magnetized plasmas

In fusion applications we have strongly magnetized plasmas

F = q(E + v × B)

Gyrokinetics averages over the motion perpendicular to the magnetic fields.
▶ Reduces the problem to five dimensions (3 in space and 2 in velocity).
▶ Removes the extremely fast gyromotion from the model (order of ps for electrons).

Picture from doi:10.1088/0029-5515/55/5/053027 and Matthias Hirsch (CC).

http://dx.doi.org/10.1088/0029-5515/55/5/053027
https://commons.wikimedia.org/wiki/File:Gyrationsfrequenz_de.png


A gyrokinetic model for shear Alfvén waves

Shear Alfvén waves are electromagnetic waves in a plasma that propagate parallel
to the magnetic field.
▶ Little damping and thus important for stability.
▶ Complex interaction in tokamak due to toroidicity.

NASA MMS spacecraft study Alfvén waves in space.

Kinetic model with electric and magnetic fields for f (t, x , y , z , v)

∂t f + v∂z f + 1
Me

(∂zϕ + ∂tA) ∂v f = 0, ∆⊥ϕ= CPρ, ∆⊥A= CAj .

with ρ = 1 −
∫

f dv and j = −
∫

vf dv , Me = me/mi , CP = 1/(ρi/L) and CA = βCP .



Dynamical low-rank
Low-rank approximation based on physical separation of motion along and
perpendicular to magnetic field

f (t, x , y , z , v) =
∑

ij
X f

i (t, x , y)S f
ij (t)V f

j (t, z , v).

but also for potentials ϕ and A

ϕ(t, x , y , z) =
∑

ij
Xϕ

i (t, x , y)Sϕ
ij (t)V ϕ

j (t, z),

A(t, x , y , z) =
∑

ij
XA

i (t, x , y)SA
ij (t)V A

j (t, z).

Advection treated exactly

∂tLf
i + v∂zLf

i + 1
Me

∑
mk

(eik(z) + eA
ik(z))∂v Lf

k = 0, Li =
∑

j
SijVj .



Reduced model

Reduced 1+1 dimensional model heavily employed by physicists assumes

f (t, x , y , z , v) = f̂km(t, z , v)exp(ikx) exp(imy).

Within linear theory a dispersion relation can be derived

1 − 2[1 + ωZ (ω)]
(k⊥ρi)2 (β/Meω2 − 1) = 0, ω = ω/(vth,ekz).

The dynamical low-rank algorithm captures this solution exactly.



Verification
Error in the Alfvén waves simulation (α = 10−5, k⊥ρi = 0.2, βMe = 2).
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Numerical simulation
Alfvén wave simulation on a desktop computer, here with r = 3.
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DLR is not just for the weakly nonlinear regime



Two-stream instability

Low-rank approximation with 512 grid points per direction (r = 10 left, r = 20 right).



Two-stream instability

Time evolution of the electric energy.
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Conservative dynamical low-rank approximation



Galerkin condition

Orthogonal projection

Find ∂t f = g ∈ Tf M such that ∥g − RHS∥ is minimal.

That is, g = P(f )RHS.

Galerkin condition

Find ∂t f such that ⟨ν, ∂t f ⟩ = ⟨ν, RHS⟩ ∀ν ∈ Tf M.

For the Schrödinger equation implies symplecticity, energy, and norm conservation.
▶ But the situation here is very different.



L2 conservation

Galerkin condition implies L2 norm conservation

∂t∥f ∥2 = 2⟨f , ∂t f ⟩xv = 2⟨f , RHS⟩xv = 0

since f ∈ Tf M.

But wait, why do we have ⟨f , RHS⟩xv = 0?

This is how we (directly) prove L2 conservation for the underlying model

∂t∥f ∥2 = 2⟨f , RHS⟩xv =
∫

−∇x · (vf 2) + ∇v · (Ef 2) d(x , v) = 0.

The analytic argument carries over. This will be an important technique!



Mass conservation

From
∂t f + ∇x · (vf ) − ∇v · (Ef ) = 0

we follow by integrating in v

∂t

∫
f dx + ∇x ·

∫
vf dv = 0,

which is more commonly written as

∂tρ + ∇ · j = 0, ρ =
∫

f dv , j =
∫

vf dv .

Integrating in x we get
M =

∫
f d(x , v) = const.

That is, conservation of mass.



Momentum or charge conservation

From
∂t(vf ) + ∇x · ((v ⊗ v)f ) − v∇v · (Ef ) = 0

we follow by integrating in v

∂t j + ∇x · σ = −
∫

Ef dv = Eρ, σ =
∫

(v ⊗ v)f dv .

Since
E (1 − ρ) = ∇ · (E ⊗ E − 1

2E 2)

and
∫

E dx = 0 we obtain

P =
∫

vf d(x , v) = const,

That is, conservation of momentum.



Energy conservation

We already know that energy (i.e. the Hamiltonian) is conserved

H = 1
2

∫
v2f d(x , v) + 1

2

∫
E 2 dx .

Similar to mass and momentum there is also an associated local conservation law

∂te + ∇x · Q = E · (∂tE − j), e = 1
2

∫
v2f dv + 1

2E 2, Q = 1
2

∫
vv2f dv .



Dynamical low-rank approximation

The dynamical low-rank approximation finds the, in some sense, best L2

approximation.
▶ No guarantee that mass, momentum, or energy is conserved.

Linear Landau damping (left) and two-stream instability (right).

0 20 40 60 80 100
10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2 electric energy
r=5
r=10
analytic rate (0.153)

0 20 40 60 80 100

10 15

10 14

10 13

error mass
r=5
r=10
r=20

0 20 40 60 80 100
10 14

10 13

10 12

10 11

10 10

10 9

10 8

error energy
r=5
r=10
r=20

0 20 40 60 80 100

10 15

10 14

10 13

10 12
error l2 norm

r=5
r=10
r=20

0 20 40 60 80 100

10 9

10 7

10 5

10 3

10 1

101

electric energy
r=5
r=10
r=20
full grid

0 20 40 60 80 100

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

error mass
r=5
r=10
r=20
full grid

0 20 40 60 80 100

10 12

10 10

10 8

10 6

10 4

10 2

100 error energy
r=5
r=10
r=20
full grid

0 20 40 60 80 100

10 15

10 14

10 13

error l2 norm

r=5
r=10
r=20
full grid

This failure is in stark contrast to Eulerian and particle methods.



Literature

[Z. Peng, R. McClarren, M. Frank, J. Comput. Phys., 421 (2020)]
▶ Rescale solution to obtain mass conservation.
▶ Global mass conservation only.
▶ Not extensible to other invariants.

[Z. Peng, and R.G. McClarren. arXiv:2011.06072]
▶ Couple moments with low-rank approximation of g , where f = M + g .
▶ Needs to enforce

∫
g d(x , v) = 0.

▶ Global invariants only.

[L. Einkemmer, C. Lubich. SIAM J. Sci. Comput., 40(5) (2018)]
▶ Add correction λijXiVj to enforce conservation (Lagrange multiplier).
▶ Conserves either global invariants or (a projected version of) conservation laws.
▶ Not able to simultaneously conserve both.



Global vs local conservation

We should not forget the
local conservation law!



Conservative dynamical low-rank approximation



Conservative dynamical low-rank approximation

Fundamental observation: If v 7→ 1/v 7→ v/v 7→ v2 is part of the approximation
space V = span{V1, . . . , Vr } then we obtain the conservation laws also in the DLRA.

For Kj =
∑

i XiSij we have

f =
∑

j
KjVj , and thus ρ =

∫
f dv =

∑
j

Kj⟨1, Vj⟩v .

Now we assume that V1 ∝ 1. Then

ρ = 1
V1

K1

and thus
∂tρ = 1

V1
⟨V1, RHS⟩v =

∫
Ωv

RHS dv = −∇ · j .

Argument from the continuous system carries over.



Problems

Problem 1: These functions do not lie in L2(R3).
▶ We use an L2 space weighted by f0v .
▶ For kinetic equations f0v (v) = exp(−v2/2) is usually a reasonable choice.

Low-rank approximation
f = f0v

∑
ij

XiSijVj

with Xi ∈ L2(Ωx ) and

Vj ∈ L2(Ωv , f0v ) =
{

g :
∫

f0v g2 dx < ∞
}

.

Problem 2: The basis functions are chosen by the algorithm to satisfy a Galerkin
condition.
▶ Basis functions change as time evolves in order to adapt to the problem.



Conservative dynamical low-rank algorithm

Some of the v dependent basis functions Vj are held fixed

Ua(v) = Va(t, v), 1 ≤ a ≤ m and Wp(t, v) = Vp(t, v), m < p ≤ r .

But orthogonality between Ua and Wp still needs to be enforced.

Petrov–Galerkin condition(
ν

f0v
, ∂t f − RHS

)
xv

= 0 ∀ν ∈ Tf M

with (f , g) =
∫

Ωv
fg dv .

Equations of motion for Sij : We test with νkl = f0v XkVl



Equations of motion for X
We test with νk = f0v χVk , χ is arbitrary.
▶ Since νk = f0v

∑
ij ẊiSijVj with Ẋi = χ(x)S−1

ki it holds that νk ∈ Tf M.
The Petrov–Galerkin condition becomes(

Vkχ, f0v
∑

ij

(
ẊiSijVj + Xi ṠijVj

)
+ f0v

∑
ip

XiSipẆp

)
xv

= (Vkχ, RHS)xv .

which we can rewrite as〈
Vkχ,

∑
ij

(
ẊiSijVj + Xi ṠijVj

)
+
∑
ip

XiSipẆp

〉
xv

= (Vkχ, RHS)xv

Using orthogonality/gauge cond. and χ arbitrary, we obtain the equations of motion∑
i

ẊiSik = (Vk , RHS)v −
∑

i
Xi Ṡik .



Equations of motion for W

We test with νq = f0v ζ
∑

i XiSiq, ζ is arbitrary.
▶ Since νq = f0v

∑
ip XiSipẆp with Ẇp = δpqζ(v) it holds that νq ∈ Tf M.

The Petrov–Galerkin condition becomes∑
i

(
ζXiSiq, f0v

∑
kl

(
ẊkSklVl + Xk ṠklVl

)
+ f0v

∑
kp

XkSkpẆp

)
xv

=
∑

i
(ζXiSiq, RHS)xv

Using orthogonality/gauge cond. and ζ arbitrary, we obtain the equations of motion

∑
ip

SiqSip(∂tWp) +
∑

il
Siq(∂tSil)Vl = 1

f0v

∑
i

Siq(Xi , RHS)x .



Coefficients

The coefficients are slightly different due to the weighted approximation space.

For example

1
f0v

(Xi , RHS)x = 1
f0v

(Xi , −v · ∇x f + E · ∇v f )x

= − 1
f0v

∑
kl

f0v ⟨Xi , ∇xXk⟩x · vSklVl + 1
f0v

∑
kl

Skl∇v (f0v Vl) · ⟨Xi , EXk⟩x

= −
∑
kl

(v · d2
ik)SklVl + 1

f0v

∑
kl

d1
ik [E ] · ∇v (f0v SklVl)

= −
∑
kl

(v · d2
ik)SklVl +

∑
kl

d1
ik [E ] · [∇v (SklVl) + ∇v (log f0v )SklVl ] ,

where
d1

ik [E ] = ⟨XiEXk⟩x , d2
ik = ⟨Xi , ∇xXk⟩x .



Conservative dynamical low-rank algorithm

We have
▶ U1 ∝ 1, U2 ∝ v , U3 ∝ v2 lie in the approximation space span{V1, . . . , Vr } by

construction;
▶ The dynamics determined Wp are orthogonal to the Ua as

∂t⟨Ua, Wp⟩v =
∑
iq

T −1
pq Siq⟨ 1

f0v
UaXi , RHS⟩xv −

∑
il

T −1
pq Siq∂tSil⟨Ua, Vl⟩v

=
∑
iq

T −1
pq Siq⟨ 1

f0v
UaXi , RHS⟩xv −

∑
il

T −1
pq Siq(XiUa, RHS)xv = 0.

Results in a mass, momentum, and energy conservative DLR approximation.



Momentum conservation

We choose U2 such that v = ∥v∥U2, i.e. U2 ∝ v .

Our dynamical low-rank approximation is conservative because we can use the
argument for the original problem.

For example, for the momentum density we have

j =
∫

vf dv =
∑

j
Kj

∫
f0v vVj dv = ∥v∥

∑
j

Kj⟨U2, Vj⟩ = ∥v∥K2.

Conservation of momentum

∂t j = ∥v∥∂tK2 = ∥v∥(U2, RHS)v =
∫

vRHS dv = −∇x · σ − Eρ.

Integration in x then gives the global invariant.



Conservative time and space discretization



Time discretization

Explicit Euler scheme applied to the equations of motion

Sn+1
kl = Sn

kl + ∆t (Xn
k V n

l , RHSn)xv ,

Xn+1
i = Xn

i + ∆t
∑

k
(Sn)−1

ik

[
(V n

k , RHSn)v −
∑

l
Xn

l (Xn
l V n

k , RHSn)xv

]
,

W n+1
p = W n

p + ∆t
∑

q
((Sn)T Sn)−1

pq

[ 1
f0v

∑
i

Sn
iq(Xn

i , RHSn)x −
∑

il
Sn

iq (Xn
i V n

l , RHSn)xv V n
l

]
,

is not conservative.

Uses Sn, i.e. S at time tn, to compute Xn+1.
▶ There is no well defined Kn and Kn+1 and thus the argument applied before does

not carry over.



Conservative time discretization

We can rewrite the equation for K in conservative form

∂t

(∑
i

XiSik

)
= (Vk , RHS)v .

Discretization yields the conservative Euler scheme

Sn+1
kl = Sn

kl + ∆t (Xn
k V n

l , RHSn)xv ,

Xn+1
i =

∑
k

(Sn+1)−1
ik

[∑
j

Xn
j Sn

jk + ∆t (V n
k , RHSn)v

]
,

W n+1
p = W n

p + ∆t
∑
qi

((Sn)T Sn)−1
pq Sn

iq

[ 1
f0v

(Xn
i , RHSn)x −

∑
l

(Xn
i V n

l , RHSn)xv V n
l

]
.

Method is fully explicit and mass and momentum conservative up to machine
precision.



Conservation laws

The conservative Euler scheme also satisfies the discretized versions of the local
conservation laws.

Mass:
ρn+1 − ρn

∆t = 1
U1

Kn+1
1 − Kn

1
∆t =

∫
Ωv

RHSn dv = −∇x · jn.

Momentum:

jn+1 − jn

∆t = ∥v∥Kn+1
2 − Kn

2
∆t =

∫
Ωv

vRHSn dv = −∇x · σn − Enρn.



Failure of energy conservation

We choose U3 such that v2 − 1 = ∥v2 − 1∥U3, i.e. U3 ∝ v2 − 1.

We have

en+1 − en

∆t = ∥v2 − 1∥Kn+1
3 − Kn

3
2∆t + ∥1∥Kn+1

1 − Kn
1

2∆t + (En+1)2 − (En)2

2∆t

= 1
2

∫
Ωv

v2RHSn dv + En En+1 − En

∆t + (En+1 − En)2

2∆t

= ∇x · Qn + En ·
(

En+1 − En

∆t − jn
)

+ (En+1 − En)2

2∆t .

Integrating in x yields

Hn+1 − Hn = ∆t
∫

Ωx
En ·

(
En+1 − En

∆t − jn
)

dx + 1
2

∫
Ωx

(En+1 − En)2 dx = O(∆t2).



Energy conservation

Can be remedied by solving

∂t f + v∇x f − En+1/2∇v f = 0, En+1/2 = (En+1 + En)/2.

Resulting scheme is energy conservative

en+1 − en

∆t = ∇x · Qn − En+1/2 · jn + (En+1 − En)(En+1 + En)
2∆t

= ∇x · Qn + En+1/2 ·
(

En+1 − En

τ
− jn

)

but implicit.



Conservative space discretization

Obtaining a conservative space discretization is straightforward.
▶ Assumption on the method is that discrete integration by parts is exact.

Examples
▶ FFT based methods
▶ Standard second-order centered finite differences
▶ discontinuous Galerkin schemes with centered flux

Discrete integration by parts for centered differences and periodic boundary
conditions

n−1∑
i=0

(gi+1 − gi−1) =
n∑

i=1
gi −

n−2∑
i=−1

gi = gn − g0 + gn−1 − g−1 = 0.



Numerical results
Conservative DLR and (fully explicit) conservative Euler scheme.
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Robustness

Robustness to overapproximation is desirable (especially if rank adaptivity is used).
▶ Avoid inverting S.

Conservative DLR algorithm can not be combined with projector splitting.



Unconventional integrator

Step 1: Compute Kn+1
k and Ln+1,n

q with Kn+1
k =

∑
i Xn+1

i Sn+1
ik and

Ln+1,n
q =

∑
ip Sn

iqSn
ipW n+1

p .

Step 2: Perform a QR decomposition

Kn+1
k =

∑
i

Xn+1
i R1

ik , Ln+1,n
q =

∑
p

W n+1
p R2

pq.

and throw away R1
ik and Ln+1,n

q .
Step 3: Find the best approximation in X = span{Xi} and V = span{Vj}

Sn+1
kl =

∑
ij

MkiSn
ij NT

jl + ∆t
(
Xn+1

k V n+1
l , RHS[f (Xn+1, MSnNT , V n+1)]

)
xv

,

Mki = ⟨Xn+1
k Xn

i ⟩x , NT
jl = ⟨V n

j V n+1
l ⟩v .

G. Ceruti, C. Lubich. BIT Numer. Math. 62 (2022).



Unconventional integrator

The unconventional integrator does destroy conservation.

The projection given by∑
k

Xn+1
k Mki =

∑
k

⟨Xn
i , Xn+1

k ⟩xXn+1
k = PXn+1Xn

i .

is not exact.

In order to preserve the local conservation laws we need to satisfy, e.g.,

∂tρ + ∇x · j = 0.

However, ∇x · j does not necessarily lie in Xn.



Conservative unconventional integrator

In order to make the unconventional integrator conservative we make the following two
modifications.

Modification 1: Augment the basis to[
Kn+1 Xn ∇Xn

]
and

[
U Ln+1 W n

]
.

This would increase the rank in each time step.

Modification 2: Perform a truncation (projection) to rank r .
▶ This has to be done such that the projection on U is exact.

We first project onto U (without error) and then truncate the remainder using a SVD.

L.E., A. Ostermann, C. Scalone, arXiv:2206.09374.



Numerical results

Nonlinear Landau
damping with r = 25.
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