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Nonlinear Landau damping

Small scales in phase space are a common feature of kinetic simulation.
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Numerical challenges

Small scale structures force a sufficiently fine space discretization.

The phase space is up to six-dimensional.
» n =50 250 GB memory (workstation)
>
» n =200 1024 TB memory (largest supercomputer)

We need a numerical method
» for which stability is not dictated by vr < h
» that does not introduce additional memory requirements
» that is scalable to large HPC systems

» that does not introduce too much numerical diffusion



High-performance computing

To obtain results for five or six-dimensional problems requires the largest
supercomputers currently available (perhaps more than that).

Simulation using ~ 1500 GPUs and 7231443 grid points.

Total —@— Communication —@—
JUWELS Booster: Advection —@— E field

» 2 x 24 AMD EPYC 7402
cores and 4x NVIDIA A100
GPUs per node.

» Total of 150 TB of GPU
memory.

» 4x Mellanox HDR200
InfiniBand ConnectX 6 (200
Gbit/s each).

time per step in seconds

1 4 16 64 256 1024
number of GPUs



Dimension reduction for the Vlasov equation

Fundamental problem of Eulerian Vlasov solvers is that effort scales as O(n%+dv).

» Curse of dimensionality

10-1 4 —— 1k particles/cell ~—— 16k particles/cell

4k particles/cell  —— sL cubic spline (32x32)
- — 8k icl ]
Particle methods have been employed 1071 e
extensively. 8 10
» Only x is discretized. £ 107
» Particles push and field solves are © 102
alternated. 10-1

10-13

time

Sparse grids
» Have problems resolving Gaussians.

» regularity is an issue as ||[0Jf(t,-,))| o t™.

E. Camporeale et al., 198, Comput. Phys. Commun., 2016.
K. Kormann, E. Sonnendriicker, Sparse Grids and Applications. 2016.



Dynamical low-rank approximation




Singular value decomposition

Singular value decomposition for a matrix Gjj = g(x;, v;) is given by
G=VSWT e R™"

with V e R™", S e R™" W € R™*" and r the rank of G.

Low-rank approximation

g(x,v) ~ Z Xi(x)SijVj(v).
ij
Orthogonality constraints: (Xj, Xj)x = 0j5, (Vi, Vi), = dj;.

Why do we think that low-rank works any better?



Dynamical low-rank approximation

Dynamical low-rank approximation
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Advantages: method does not leave manifold, analyze DLR without discretization,
better stability properties.

0. Koch, C. Lubich. SIAM J. Matrix Anal. Appl., 29(2), 2007.
J. Kusch, L.E., G. Ceruti. arXiv:2107.07282.



Dynamical low-rank approximation

Dynamical low-rank approximation

f(t,x,v) = ZX;(t,X)S;j(t)\/j(t, v).

Low-rank functions (with fixed r) form a manifold with functions in the tangent space

represented as

iy

This representation is not unique. For example,
X,':X,', S,JZO and X,':O, SU:SIJ

gives the same vector in the tangent space.



Gauge conditions

We impose the Gauge conditions <X,-,XJ->X =0 and (V, VJ>V =0.
Equation for S

(X, Vi, ) :Z<ka,,xsu A+ XiSiVi+ XiSi Vi)

_ZX/“ X 'J Vl? J +ZXI<7 XSij<Vlv Vj>v+Z<Xk7X

ij ij

= Skl
Equation for X

(Vi F) = S (VL XiSi Vi + XiS5 Vi + XiSi Vi)
ij

= ZX,-SUW/, Vidy + D XiSi(Vi, Vidy + 3 XiSi(Vi, Vi)

=D XiSi+Y_ XS

)< Si(Vi, Vi)y



Dynamical low-rank approximation

Equations of motion

0:S; = (X;Vj, RHS), ODE
Z Sij(0:Xi) = (V, ) — ZXi(atsij), x dependent PDE
> Si(0: V) = (X, )= (0:Si) V. v dependent PDE
J J

In principle we can substitute
= —v-Vxf+ E(f)-V,f.

But
» The equations couple S, X, and V;

» To obtain equations in X; and V; we have to invert S and S™.



Robustness

Back to the SVD

A~ VSWT.
Approximation by truncation
mp 00 0 O
0 puw 0 0 O pr 00
S= 0 0 M3 0 0 ~ 0 2 0
0 0 O wm O 0 0 wpus3
0 0 0 0 wus

Error vs condition number
» If 14 is large than the error is large.
» If u3 is small than inverting S is ill-conditioned.



Projector splitting integrator

Vlasov—Poisson equation constrained to the low-rank manifold
o+f = P(f) = P(f)(—v-Vxf + E(f)-V,f),

where P(f) is the orthogonal projector onto the tangent space.

We have

P(f) = Z (8tX,S,JVJ + X,&tS,J\/J + X,-S,-J-8t \/J)
ij
= Y (9:(XiSy) Vs = Xi0:55V; + Xi0:(S; V)))
ij

=D (V5 RHS)V; = > Xi(XiVj, RHS) o Vj + Y Xi(Xi, RHS),
J ij i



Projector splitting integrator

We can write
P(f)g = Pyg — PyPxg + Pxs,

where Py and Py; are the orthogonal projectors on X = span{X;: i =1...r} and
V =span{V;:j=1...r}.

This suggests a splitting.

C. Lubich and I.V. Oseledets. BIT Numer. Math. 54(1) 2014.



K step

Our goal is to solve
Of = P (—v -V + E(f)-V,f).

We rewrite the solution using K; as follows

f(t,x,v) = Z Ki(t,x)Vj(t,v), with  Kj(t,x) = ZX;(t,x)SU(t).

This yields

Zé)t tv+ZK (t,x)0: Vi(t,v)

J
= Z<Vl(t’ )y Vi —v e Vi f(tx,v) + E(F)(t, x) - Vo f(t, x,v)) Vj(t, v).



K step

The solution is given by V(t,v) = V;(0, v) and

OeKj(t,x) = (Vj, —v = v - Vi f(t,x,v) + E(f)(t, x) - Vo f(t, x,v)),
==Y (ViwW))y - VieK(t.x) + Y E - (V;V, V), Ki(t, x)
i i

For the first subflow of the projector splitting algorithm we thus obtain

OeK;(t,x) = — Z cj -V Ki(t,x) + Z cf, -E(K)(t, x)K(t, x),
! /

The coefficients are determined as follows (V = V9)
o = / WOVPdy, &= / VO(V, V) dv.
Ja, Q,

Do not neglect the cost of computing the coefficients.



K step

The equation is formulated with K and V' (neither X nor S are explicitly involved).

To proceed with the next step in the algorithm we have to obtain X and S.
» Why is this approach then advantageous?

The X and S are recovered from K by a QR decomposition as

Ki=)_XiS;
i

Well defined even for singular K = [Ki, ..., K] and gives automatically the (almost
correct) orthogonality relation for the X;.

» Result is a robust approximation even if the rank r is chosen too large.

Note that S is not necessarily diagonal.



S step

Our goal is to solve

Oef = — (—v - Vif + E(F) - V).

The solution is Xi(t,x) = Xi(0,x), Vj(t,v) = V;(0,v), and
9:Sij = (XPVP, (x,v) = (v Vi — E(S)(t,x) V)Zxk )Su(t

=3 (- di & - RIE(S(O)]) Sw(®)
kl

with
diﬂE] :/Q XilEX/}an diy —/ Xl \Y Xk)

The S step integrates backward in time.

VP(V)),,



Electric field (S step)

The electric field E(S(t)) is computed from

—Ap=1- Zx,l(x)s,-j(t)/ VP dv, E=-Vé¢.
ij

In practice we usually approximate E by E” (first order) or E"*1/2 (second order).

» E"t1/2 has to be approximated (to first order) in an actual implementation.



L step

Our goal is to solve

We define
f(t,x,v) ZX (t,x) with  Li(t,v) = ZSU(t)\/j(t, v).

J
The solution is X;(t,x) = X;(0, x) and
deLilt, v):<XJ.17x»—>( v V. + E(L)(t, Zkak (t, V)>

_de[E €N - Vo L(t,v) — Z(d,?k.v)Lk(t, v).
k

Then S and V are recovered from L by a QR decomposition.



Dynamical low-rank algorithm

First order Lie splitting

1. Solve 0:K; = — 3%, cjl, VK + 3, (:ﬁ - E(K)K; with initial value Z,-X,-OS,-(J)- up to
time At to obtain Kjl.

2. Perform a QR decomposition of Kj1 to obtain X} and S,}
3. Solve 95 = Y (<} - o3 ~
obtain S7.

4. Solve 0¢Lj = Y ) dj - VL — 32 (d - v)Li equation with initial value > 55\/1-0 up
to time At to obtain L}.

J, ) Sy with initial value 51 up to time At to

5. Perform a QR decomposition of L} to obtain \/j1 and 53

Spectral and semi-Lagrangian methods can still be employed.

L.E., C. Lubich, SIAM J. Sci. Comput. 40(5), 2018.



Computational complexity

Computational complexity: O(r?n9) instead of O(n%+%).
» Limited by computation of the coefficients and solution of evolution equations.

Memory usage: O(rn?) instead of O(n%F).
» Limited by storage of X; and V.

Coefficients: cﬁ :/ v\/j0 VP dv Storage: O(r?) Effort: O(r?n®)

v

Integration: OtKj = ... Storage: O(rn%) Effort: O(r?n%)

X

d = max(dx, dv).



Implementation

Discretized system
f=XSVT

with
fri = f(t, xk, v1), Xii = Xi(t, xk), Vij = \/j(t’ vi)-

In matrix form

Xu(t,xa) oo Xe(t,x1) Vi(t,v) -+ Vi(t, v)
X(t) = : : . V()= : :
Xi(t,xn) -+ Xe(t,xn) Vi(t,vm) -+ Vi(t,vm)

K step (one-dimensional case)
DeK = —Ag, K(c1)T + diag(E")K(c?) T,

where Ay, is the discretization of the spatial derivative.



Why does dynamical low-rank work?




Linear Landau damping

Low-rank approximation with 256 grid points in each direction.
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Plasma echo

Plasma echo with 512 x 4096 grid points.
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Reason 1: DLR does not need smoothness

The low-rank algorithm is able to resolve filamentation. Consider

2

Otf(t,x,v) + v - Vif(t,x,v) =0, f(0,x,v) = efxe=v",

Then

ik(x— 2 Lo 9
f(t,X, V):e/k(x vt)e v :e/kxe /kvte Ve

This is still rank 1.

Thus, smoothness in v is not necessary for low-rank approximations.



Reason 2: DLR resolves dynamics close to the linear regime

We consider a small perturbation around the equilibrium

f(t,x,v) = + (e, x,v),  E(t,x) =0+ EWD(t,x).

This results in the linearized Vlasov equation

AW (t,x,v) + v - Vi fD(t, x,v) + ED(x) .V, =0.
Dynamics (e.g. for Landau damping m = 1)
time evolution

m
Z ?k( 0 V ikix + Z ?k(,-l)(n V)eikix

which is at most rank m + 1.

L.E., A. Ostermann, C. Piazzola, J. Comput. Phys. 403, 2020.



Reason 3: Certain limits have a low-rank structure

Collisional kinetic equations have a diffusive or fluid limit

1 e—0
Ocf(t,x,v)+v - Vif(t,x,v) = —(fq(f) — f) e Euler equations
€

w (vorticity)

In the incompressible case the limit is approximately low-rank.

R

» Compressible case requires a different low-rank approximation.

0
00 02 04 06 08

p (density)

Rigorous results available for linear Boltzmann equation.

» Based on a Chapman—Enskog expansion of the low-rank
algorithm.

Z. Ding, L.E., Q. Li. SIAM J. Numer. Anal. 59(4) 2021.
L.E., J. Hu, L. Ying. SIAM J. Sci. Comput. 43(5) 2021.



Why does low dynamical low-rank work?

In general, it is not well understood under which conditions a kinetic problem
admits a low-rank representation.



Alfvén waves




Strongly magnetized plasmas

In fusion applications we have strongly magnetized plasmas
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Gyrokinetics averages over the motion perpendicular to the magnetic fields.
» Reduces the problem to five dimensions (3 in space and 2 in velocity).

» Removes the extremely fast gyromotion from the model (order of ps for electrons).

Picture from doi:10.1088,/0029-5515/55/5/053027 and Matthias Hirsch (CC).


http://dx.doi.org/10.1088/0029-5515/55/5/053027
https://commons.wikimedia.org/wiki/File:Gyrationsfrequenz_de.png

A gyrokinetic model for shear Alfvén waves

Shear Alfvén waves are electromagnetic waves in a plasma that propagate parallel
to the magnetic field.

» Little damping and thus important for stability.

» Complex interaction in tokamak due to toroidicity.

NASA MMS spacecraft study Alfvén waves in space.
Kinetic model with electric and magnetic fields for f(t,x,y, z,v)
1
Otf + +ﬁ(82¢+8tA)8vf:0, A o= Cpp, A A= Cyj.
e
with p=1— [fdvand j=— [vfdv, Me = me/m;, Cp =1/(pi/L) and Ca = BCp.



Dynamical low-rank

Low-rank approximation based on physical separation of motion along and
perpendicular to magnetic field

F(t,x,y,2,v) = > X[ (t,x,y)SE() V] (t, 2, v).

but also for potentials ¢ and A
o(t,%,y, 2 zx¢txy (O)VE(t,2),

A(t, x,y,z) :ZX,-A (t,x,y) ,-j(t)\/jA(t,z).

treated exactly

1
8th + + M Z(e,-k(z) + ef,‘((z))&,L,'i = 0, L,‘ = Z S,J VJ
€ mk j



Reduced model

Reduced 141 dimensional model heavily employed by physicists assumes

F(t,x,y,2,v) = fim(t, z, v)exp(ikx) exp(imy).

Within linear theory a dispersion relation can be derived

201+ wZ(w)

= Wig/ma? 1) =0, ) (venek).

gl
I

The dynamical low-rank algorithm captures this solution exactly.



Verification

Error in the Alfvén waves simulation (a = 1075, k| p; = 0.2, BM, = 2).

—— electric energy (r=2) —— magnetic energy (r=2) — ee+me (r=2)

1 —
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—— error electric energy (r =2)
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umerical simulation




DLR is not just for the weakly nonlinear regime




Two-stream instability

Low-rank approximation with 512 grid points per direction (r = 10 left, r = 20 right).
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Two-stream instability

Time evolution of the electric energy.

electric energy
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Conservative dynamical low-rank approximation




Galerkin condition

Orthogonal projection
Find 0:.f =g € TfM such that |g — RHS| is minimal.

That is, g = P(f)RHS.
Galerkin condition

Find 0:f such that (v,0:f) = (v,RHS) Vv e TeM.

For the Schrédinger equation implies symplecticity, energy, and norm conservation.

» But the situation here is very different.



[2 conservation

Galerkin condition implies L2 norm conservation
OeIf |1 = 2(F, 0¢F)xy = 2(F, RHS)xy = 0

since f € T M.
But wait, why do we have (f, RHS),, = 0?

This is how we (directly) prove L? conservation for the underlying model
Oulf|> = 20F, RHS), = [ =V () + ¥, - (EF) d(x, v) = 0.

The analytic argument carries over. This will be an important technique!



Mass conservation

From

we follow by integrating in v
8t/fdx+vx-/vfdv:0,

which is more commonly written as

Op+V-j=0, p:/fdv, j:/vfdv.

Integrating in x we get
M = /fd(x, v) = const.

That is, conservation of mass.



Momentum or charge conservation

From
Ot(vf) + Vi - (v v)f)—vV, - (Ef)=0

we follow by integrating in v

8tj+VX-U:—/Efdv:Ep, U:/(V@V)fdv.

Since
E(l-p)=V-(E®E-1E?)

and [ E dx = 0 we obtain
P= / vfd(x, v) = const,

That is, conservation of momentum.



Energy conservation

We already know that energy (i.e. the Hamiltonian) is conserved

1 1
H:E/v2fd(x, v)+§/52dx.

Similar to mass and momentum there is also an associated local conservation law

1 1 1
Dre+Vy-Q=E - (3:E — ), ezé/v2fdv+§E2, Q:E/vvzfdv.



Dynamical low-rank approximation

The dynamical low-rank approximation finds the, in some sense, best L2
approximation.

» No guarantee that mass, momentum, or energy is conserved.

Linear Landau damping (left) and two-stream instability (right).

error mass error mass

This failure is in stark contrast to Eulerian and particle methods.



Literature

[Z. Peng, R. McClarren, M. Frank, J. Comput. Phys., 421 (2020)]
» Rescale solution to obtain mass conservation.
» Global mass conservation only.

» Not extensible to other invariants.

[Z. Peng, and R.G. McClarren. arXiv:2011.06072]
» Couple moments with low-rank approximation of g, where f = M + g.
» Needs to enforce [ gd(x,v)=0.

» Global invariants only.

[L. Einkemmer, C. Lubich. SIAM J. Sci. Comput., 40(5) (2018)]
» Add correction A\ X;V; to enforce conservation (Lagrange multiplier).
» Conserves either global invariants or (a projected version of ) conservation laws.

» Not able to simultaneously conserve both.



Global vs local conservation
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Conservative dynamical low-rank approximation




Conservative dynamical low-rank approximation

Fundamental observation: If v — 1/v — v/v — v is part of the approximation
space V =span{V4,..., V,} then we obtain the conservation laws also in the DLRA.

For K; = >_; X;Sjj we have

f=> KV, and thus p:/fdv:ZKj<1 Vi)
J J
Now we assume that V4 < 1. Then
p= K

and thus dep = — (V4,RHS), / RHS dv = —V - j

Argument from the continuous system carries over.



Problems

Problem 1: These functions do not lie in L?(R3).
» We use an L? space weighted by f, .
» For kinetic equations is usually a reasonable choice.

Low-rank approximation
f=rfY XiS;V
ij

with X; € L2(Qy) and
\/jELZ(Qv,fov):{g: / gzdx<oo}.

Problem 2: The basis functions are chosen by the algorithm to satisfy a Galerkin
condition.

» Basis functions change as time evolves in order to adapt to the problem.



Conservative dynamical low-rank algorithm

Some of the v dependent basis functions V; are held fixed

Us(v) = Vu(t,v), 1<a<m and Wp(t,v) = V,(t,v),

But orthogonality between U, and W, still needs to be enforced.

Petrov—Galerkin condition

(”,atf— ):o Vv e TrM
fbv XV

with (f,g) = [q, fgdv.

Equations of motion for S;: We test with vy = fo, X, V)

m<p<r.



Equations of motion for X

We test with v, = fy, x Vi, x is arbitrary.
> Since vk = fo, 3 XiS;V; with X; = x(x)S;" it holds that v € TrM.

The Petrov—Galerkin condition becomes

(Ve for 3 (X555 + Xi5515) + fou S-Sy ) = (Vi RHS),,.
ip

XV

i)

which we can rewrite as

<ka, > (KiSVy+ Xi53 Vi) + D XiSip Wp> = (Vix, RHS),,,

ip XV
Using orthogonality/gauge cond. and  arbitrary, we obtain the equations of motion

ZXiSik:(Vlﬂ )V—ZX,‘S;[('



Equations of motion for W

We test with vg = f5,(>"; XiSig, C is arbitrary.
> Since vg = fov >_), X,-S;pr with Wp = 0pgC(v) it holds that v, € Tf M.

The Petrov—Galerkin condition becomes

> (CX/Sim fou > (stkl Vi + Xk Su V/) + fov Y XkSkp Wp) =Y ((XiSig, )xv

i Kl kp xv i

Using orthogonality/gauge cond. and ( arbitrary, we obtain the equations of motion

Z 5lqslp a1.‘ + Z Slq 8tsll VI Z Slq i )x-

ip



Coefficients

The coefficients are slightly different due to the weighted approximation space.

For example

fjv(x,-, RHS), = f; (Xi, —v - Vxf +E-V,f),
= fo\/zfov Xi, Vi Xi)x - VSk/VI+€ZSk/v (fov Vi) - (X, EXk)x
:—Z(v dz) 5k/V/+de [E]- V. (fov S Vi)
fov
:_Z(v d2) 5k/V/+Zd [E]- [V (SuV)) + SuVi,
where

di]l}[E] = <XiEXk>X> d2k = <Xi7vXXk>x-

]



Conservative dynamical low-rank algorithm

We have

» U; 1, Us xx v, Us < v? lie in the approximation space span{V4,..., V,} by

construction;
» The dynamics determined W, are orthogonal to the U, as

Ot (Ua, W,) Z Toq Sig(7=UaXi, RHS) Z T oo Siq0:Si(Ua, Vi)y

Z Toq Sig (7= UaXi, RHS) . Z Too Sig(XiUa, RHS),,

Results in a mass, momentum, and energy conservative DLR approximation.



Momentum conservation

We choose U; such that v = ||v||Uz, i.e. Uz x v.

Our dynamical low-rank approximation is conservative because we can use the
argument for the original problem.

For example, for the momentum density we have

j= [viav =K [y = v S K2 V) = vl K
J J

Conservation of momentum

0ej = ||VI|9eKa = [|v]|(Ua, RHS), = / VRHS dv = —V,, - o — Ep.

Integration in x then gives the global invariant.



Conservative time and space discretization




Time discretization

Explicit Euler scheme applied to the equations of motion
Sit = Sh+ At (X{V/,RHS™),

X,'n+1 = X"+ Atz (S")i ik {( Vi, RHS" ZX/ (X" Vi, RHSH)XV] 7
k

witt = W”+Atz SMTS™,. [ ZS” X" RHS™) Z (X"V/,RHS"),, V,
is not conservative.

Uses S”, i.e. S at time t”, to compute X"*1.
» There is no well defined K" and K"*1 and thus the argument applied before does

not carry over.



Conservative time discretization

We can rewrite the equation for K in conservative form
at(Zx,-s,-k) — (Vi RHS), .

Discretization yields the conservative Euler scheme

S = S 4+ At (X[ V[, RHS")

XPh=3 (8" [Z X7'Si + At (Vf, RHS")V},
k J
n+1 _ n n T 1cn n n ny/n n n
W W+ BT SRS PG )= S OPVIRHS),, V7|

Method is fully explicit and mass and momentum conservative up to machine
precision.



Conservation laws

The conservative Euler scheme also satisfies the discretized versions of the local
conservation laws.

Mass: - »
P —p" 1 KT KT ,
= = RHS"dv = -V, - j".
At Ui At a, Y J
Momentum:
jn+1 _jn K2n+1

— K7
= VI :/ VRHS" dv = —V, - 0" — E"p".
Q,

At A



Failure of energy conservation

We choose U such that v —1 = ||v? — 1||Us, i.e. Us ox v —1.

We have
el ey K§H - K " KIT =K (B0 ()
At 2At 2At 2At
1 ) Enfl _ En (En+1 o En)2
= — RHS" d E"
2/£VV v At T A
En+1 _ En (E”+1 o En)2
= . n En . - —j" N
Vi Q14 ( At J ) + 2At

Integrating in x yields

W“—W:A#‘F-

X

(En—i-l _E"

1
_n - En+1_En2 _ 2‘
; j>dx+2/QX( )2dx = O(At?)



Energy conservation

Can be remedied by solving

Oef + vV f — EMT12V f =0, EMY2 — (EMY 4 EM) )2,

Resulting scheme is energy conservative

en+1 —en +1 (En+1 o E”)(E"+l + En)
R . On _ gn+l/2  on
At VX Q E J + AT
En+1 _ En
=V, Q"+ E"L/2. <7- j”)

but implicit.



Conservative space discretization

Obtaining a conservative space discretization is straightforward.

» Assumption on the method is that discrete integration by parts is exact.

Examples
» FFT based methods
» Standard second-order centered finite differences

» discontinuous Galerkin schemes with centered flux

Discrete integration by parts for centered differences and periodic boundary
conditions

n—1

n
> (gi41—&i-1) = D _&i Z 8 =8 —8 +8 1—81=0.
i=1

i=0 i=—1



Numerical results

Conservative DLR and (fully explicit) conservative Euler scheme.
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Robustness

Robustness to overapproximation is desirable (especially if rank adaptivity is used).

» Avoid inverting S.

Conservative DLR algorithm can not be combined with projector splitting.



Unconventional integrator

Step 1: Compute K/ and LG with K1 = 30, X+isntt 4

n+1,n ncn n+1
Lq —Z,pS 5,pr+ )

Step 2: Perform a QR decomposition

n+1 n+1 n+1l,n __ n
Ki " ZX " le’ Lq+1 - Z WPHqu
P

and throw away R} and Lottn,
Step 3: Find the best approximation in X = span{X;} and V = span{V;}

Xv

St =0 MSENT + At (XEH VL RHS[F(XTT MSTNT, V)

Mii = (XX, Ni = (V).

G. Ceruti, C. Lubich. BIT Numer. Math. 62 (2022).



Unconventional integrator

The unconventional integrator does destroy conservation.

The projection given by

ZX£+1MM — Z(Xin7XII<7+1>XX/?+1 — Xin'
k k

is not exact.

In order to preserve the local conservation laws we need to satisfy, e.g.,

However, V, - j does not necessarily lie in X",



Conservative unconventional integrator

In order to make the unconventional integrator conservative we make the following two
modifications.

Modification 1: the basis to
Kt } and [U Lo+l } :
This would increase the rank in each time step.

Modification 2: Perform a truncation (projection) to rank r.

» This has to be done such that the projection on U is exact.

We first project onto U (without error) and then truncate the remainder using a SVD.

L.E., A. Ostermann, C. Scalone, arXiv:2206.09374.



Numerical results

Nonlinear Landau
damping with r = 25.
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