
GPU programming in CUDA:
Using multiple GPUs

Lukas Einkemmer
Department of Mathematics

University of Innsbruck

PRACE Autumn School, Innsbruck
Link to slides: http://www.einkemmer.net/training.html

http://www.einkemmer.net/training.html


Goals

Our goals in this section are
I Understanding asynchronous execution.
I How to use multiple GPUs
I What additional performance considerations need to be taken into account



Interleaving different tasks



Synchronous vs. Asynchronous

Usual CUDA execution model looks like
// Copy necessary data to host.
cudaMemcpy(..., cudaMemcpyHostToDevice);

// Launch one or multiple kernels.
kernel<<<num_threads, num_blocks>>>(...);

do_some_cpu_work();

// Copy results back to the host.
cudaMemcpy(..., cudaMemcpyDeviceToHost);

Kernel launches are asynchronous.
I do some cpu work is executed concurrently with the kernel.

cudaMemcpy waits for the kernel to complete and then copies back the data.



Interleaving different tasks

There are situations were
I computation on the GPU
I moving data from and to the GPU
I moving data between two different GPUs
I doing computation on the CPU

can take place in parallel.

Data transfer is often slow. We are going to discuss a way to hide that overhead.



CUDA streams

CUDA operates with so-called streams.

A stream is a handle for a sequence of operations that depend on each other.
cudaStream_t stream1;
cudaStreamCreate(&stream1);
...
cudaStreamDestroy(stream1);

The default stream is 0. By default all operations belong to the default stream.



Interleaving computations on CPU and GPU

// Starts an memory operation in stream 0.
cudaMemcpyAsync(x_d, x_h, size, cudaMemcpyHostToDevice, 0);

// Waits for cudaMemcpyAsync to complete.
kernel<<<num_threads, num_blocks>>>(...);

// Runs concurrently with the kernel call.
do_some_cpu_work();

Since both cudaMemcpyAsync and the kernel launch are placed in the default
stream (stream zero) they run in sequence (the kernel after the copy).



Interleaving communication with computation
// Create two CUDA streams.
cudaStream_t stream1; cudaStreamCreate(&stream1);
cudaStream_t stream2; cudaStreamCreate(&stream2);

// Starts an asynchronous memory transfer in
// stream1.
cudaMemcpyAsync(x_d, x_h, size,

cudaMemcpyHostToDevice, stream1);

// Executes concurrently with cudaMemcpyAsync
// (MUST not depend on x_d).
kernel<<<num_threads, num_blocks, 0, stream2>>>(...);

// Waits for cudaMemcpyAsync to complete.
kernel<<<num_threads, num_blocks, 0, stream1>>>(...);

// Copy results back to the host.
cudaMemcpy(x_h, x_d, size, cudaMemcpyDeviceToHost);



Synchronization

We can explicitly wait for the completion of a stream by calling
cudaStreamSynchronize(stream1);

Similar to cudaDeviceSynchronize but only applies to tasks in the stream.



Interleave communication with computation

We have three tasks
I Matrix assembly which is best done on the GPU.
I Copy the assembled matrix to the CPU.
I Solve the resulting linear system on the CPU.

But: copy and solve almost take the same time.

Solution: split the data set into smaller chunks and do the assembly and copy
asynchronously.

Solve 1

Copy 1

Assembly 1

Copy 2

Assembly 2 Assembly 3 Assembly 4 Assembly 5

Copy 3 Copy 4

Solve n-1

Assembly n

Copy nCopy n-1

Solve nSolve 2 Solve 3



Multiple GPUs



Running on multiple GPUs

Available devices are numbered 0 to number of devices-1.
$ ./deviceQuery

Detected 4 CUDA Capable device(s)

Device 0: "Tesla V100-SXM2-16GB"
Device 1: "Tesla V100-SXM2-16GB"
Device 2: "Tesla V100-SXM2-16GB"
Device 3: "Tesla V100-SXM2-16GB"

Commands such as kernel launches/memory allocation/... are issued for the currently
active device.

The active device can be changed as follows
cudaSetDevice(i);
// k_my_kernel is launched on device i
k_my_kernel<<<...>>>(...);



Running on multiple GPUs

The active device can be changed even if async calls are still executing.
cudaSetDevice(0);
k_my_kernel<<<...>>>(...);
cudaMemcpyAsync(...);
cudaSetDevice(1);
k_another_kernel<<<...>>>(...);

Synchronization
cudaSetDevice(0); cudaDeviceSynchronize();
cudaSetDevice(1); cudaDeviceSynchronize();

Call to cudaDeviceSynchronize only synchronizes the current CUDA context.

Recommendation: Use a dedicated stream for each GPU (in lieu of stream 0).



Running on multiple GPUs

We can set a device in a multi-threaded environment.
Common pattern: Use one thread for each GPU
// sequential program on the CPU

#pragma omp parallel for num_threads(4)
for(int i=0;i<4;i++)
{

cudaSetDevice(i);

cudaMemcpy(...);
k_my_kernel<<<...>>>(...);
cudaMemcpy(...);

}

// sequential program on the CPU

Common pattern: Use one MPI process per GPU.



Running on multiple GPUs

Beware that the currently active device is managed on a per thread basis.

WRONG!
cudaSetDevice(1);
#pragma omp parallel
{

k_my_kernel<<<...>>>(...);
}

Correct.
cudaSetDevice(1);
#pragma omp parallel
{

cudaSetDevice(1);
k_my_kernel<<<...>>>(...);

}



Distribute your program to multiple GPUs

We are in a distributed memory environment now.

Even if Unified Memory allows us to read memory from all devices, access speed is not
the same.
I Programmer has to think how to distribute data in order to minimize data

movement between devices.
I Not dissimilar to MPI, although at a smaller scale.

What we can expect
I V100 main memory: 900 GB/s
I V100 NVLink device-to-device: 300 GB/s
I PCIe 3.0 16x: 16 GB/s



Mechanics

Data transfer between GPUs works in in the same way as data transfer between
device and host.
cudaMemcpy(d_src, d_dest, sizeof(double)*n,

cudaMemcpyDefault);

Devices that are involved in data transfer are inferred from pointer d src and d dest.
I No need to explicitly specify source and target device.

No guarantee that copy is device to device.
I Data flow could look like

device 0 → host → device 1



Peer-to-peer transfer

Many modern GPU systems are able to directly (without involving the host) transfer
data.
I This is called peer-to-peer transfer.

Enable peer-to-peer data transfer between device i and j
int is_able;
cudaSetDevice(i);
cudaDeviceCanAccessPeer(&is_able, i, j);
if(is_able)

cudaDeviceEnablePeerAccess(j, 0);

Without Unified Virtual Addressing (UVA) we need to use
cudaMemcpyPeer(dst, dst_device_id, src, src_device_id, size);



Query the system

All the information we get from deviceQuery can be obtained programmatically.

int num;
cudaGetDeviceCount(&num); // number of CUDA devices

for(int i=0;i<num;i++) {
// Query the device properties.
cudaDeviceProp prop;
cudaGetDeviceProperties(&prop, i);

cout << "Device id: " << i << endl;
cout << "Device name: " << prop.name << endl;

}



Exercise

We have a two-dimensional stencil code that solves an advection problem
(exercise-multiplegpu.cu).
I Advection in the y direction with periodic boundary conditions.
I Problem is setup such that we return to the original state.

Goal is to parallelize the program to two GPUs.



Exercise
Single GPU 2 GPUs


