
GPU programming in CUDA:
How to write efficient CUDA programs

Lukas Einkemmer
Department of Mathematics

University of Innsbruck

PRACE Autumn School, Innsbruck
Link to slides: http://www.einkemmer.net/training.html

http://www.einkemmer.net/training.html

Goals

Our goals in this section are
I Understand the performance characteristics of GPUs.
I Best practice for obtaining good performance.
I Commonly encountered issues that degrade performance (i.e. pitfalls).

Understanding performance limitations

Performance of a modern GPU

The theoretically achieved FLOPS are calculated as follows

(1.455 GHz) · (80 SM) · (64 CUDA cores) · (2 fused multiply add)
= 14.9 TFLOPS (single precision)

7.45 TFLOPS (double precision).

Not the whole story
I Boost frequency might not be thermally feasible for some application.
I There is purpose built hardware for certain mathematical functions (sin, cos, ..).
I There is purpose built hardware for (small) matrix operations (Tensor Cores).

Performance of a modern GPU

Let us consider multiplying a vector by a scalar
__global__
void kernel(double* x, double* y, int n) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
if(i < n)

y[i] = 3.0*x[i];
}

num_threads = 128;
num_blocks = n/num_threads + (n % num_threads != 0);
kernel<<<num_blocks, num_threads>>>(d_x, d_y, n);

Requires one memory read and one memory write per floating point operation.
I Achieving 7.45 TFLOPS requires a memory transfer rate (bandwidth) of

119 TB/s.
I State of the art hardware (A100) achieves at most 1600 GB/s

Compute bound vs memory bound

A problem is compute bound if the performance is dictated by how many arithmetic
operation the GPU can perform.
I numerical quadrature, solving dense linear system (LU), Monte Carlo methods, ...

A problem is memory bound if the performance is dictated by the bandwidth of main
memory.
I stencil codes, solving sparse linear systems, FFT, ...
I performance measured in achieved GB/s

Understanding the characteristics of your problem is essential to guide
optimization.

Compute bound vs memory bound

Count number of bytes transferred to/from memory and number of flops in your
algorithm. We have a memory bound problem if(flop

byte

)
algorithm

<

(flop
byte

)
hardware

≈ 8.3 (V100, double precision).

For our earlier example
__global__ void kernel(double* x, double* y, int n) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
if(i < n)

y[i] = 3.0*x[i];
}

we have (flop
byte

)
algorithm

= n
2 · sizeof(double) · n ≈ 0.06 � 8.3.

Compute bound vs memory bound
Scientific computing on GPUs (and on CPUs) leans heavily towards being
memory bound.
I Caused by the high byte/flop ratio of GPUs.
I Important exceptions: machine learning, molecular dynamics

How many memory instructions?
__global__
void k_stencil(double* x, double* y, int n) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
if(i > 0 && i < n-1)

y[i] = x[i+1]-x[i-1];
}

Memory access pattern
i=1 read x[0], x[2]
i=2 read x[1], x[3]
i=3 read x[2], x[4]
i=4 read x[3], x[5]

Caches

Knowledge of how caches work is important for performance.
Caches transfer data in chunks of fixed size (so-called cache lines)
I usually 64-256 bytes in size (8-32 doubles)

read

cache hit cache miss

cache miss

removal from cache

Cache line 0 Cache line 1 Cache line 2 Cache line 3

Value in cache

Value not in cache

First read of any byte in a cache line transfers the entire cache line.

Memory access pattern

// Access with stride 1
__global__
void k_copy(double* x, double* y, int n) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
if(i < n)

y[i] = x[i];
}

cache miss

Cache line 0 Cache line 1 Cache line 2 Cache line 3

cache hits

cache miss (perhaps)

cache hits

// Access with larger stride
__global__
void k_copy(double* x, double* y, int n) {

int i = blockIdx.x + gridDim.x*threadIdx.x;
if(i < n)

y[i] = x[i];
}

read

Cache line 0 Cache line 1 Cache line 2 Cache line 3

cache miss

cache miss

Caches

Often assuming that everything is cached perfectly is a good starting point.
I In the implementation we have to work for this!

There are important differences between CPU and GPU caches.

In CUDA caches can be explicitely controlled.
I Programmer has full control over what goes into the cache.
I We consider this shared memory later.

GPU caches are smaller and more simplistic.
I V100 has 6MB L2 cache (per device) and 128 kB L1 cache (per SM).
I CPUs use very sophisticated prefetching strategies.

Memory & data transfer

Avoid memory transfer between device and host

PCIe bandwidth is orders of magnitude slower than device memory.

Recommendation: Avoid memory transfer between device and host, if possible.

Recommendation: Copy your initial data to the device. Run your entire simulation on
the device. Only copy data back to the host if needed for output.
To get good performance we have to live on the GPU.

Recommendation: Run only parts of your algorithm on the host for which the data
transfer overhead is small.

RAM is not fast at random access

We are supposed to have random access memory (RAM).

cudaMemcpy(d_y, d_x, sizeof(double)*n,
cudaMemcpyDeviceToDevice);

800 GB/s

__global__
void k_transpose(double* x, double* y) {

int i = threadIdx.x;
int j = blockIdx.x;

y[i + blockDim.x*j] = x[j + gridDim.x*i];
}

200 GB/s

__global__
void k_random(double* x, double* y) {

long n = blockDim.x*gridDim.x;
y[rand() % n] = x[rand() % n];

}

20 GB/s

Favorable memory access pattern

Recommendation: Use contiguous memory access, if possible.

Recommendation: Well understood optimizations are available for strided memory
access (i.e. cache blocking).

Recommendation: A problem with truly random (i.e. unpredictable) access might be
better suited for the CPU.
I There is still a significant performance penalty for random memory access on the

CPU.

Recommendation: Data structures can have a big impact on how memory is
accessed.
I Array of structs vs structs of arrays.

Latency vs bandwidth

The time it takes to
I read n bytes from memory
I transfer n bytes from host to device

can be modeled by

time to completion = latency + n
bandwidth .

There are fundamental physical limits that prevent reduction in latency.

Waiting for one byte to arrive from memory could have been used to read
250 kB.

Latency

As a rule of thumb we pay the following penalty (in clock cycles)

Operation CPU GPU (V100)
arithmetics 1 4-8
Shared memory – 20
L1 hit 1-10 30
LL hit 30 190
memory 200 400
PCIe – 700
disk 105 105

Exact numbers depend on the specific architecture.

Z. Jia et al, arXiv:1804.06826.

Copy data from host to device

Situation 1:
cudaMemcpy(d_x, x, sizeof(double)*n,

cudaMemcpyHostToDevice);
10 GB/s (100 MB)

Situation 2:
long offset = n/num;
for(int i=0;i<num;i++)

cudaMemcpy(d_x+i*offset,
x+i*offset,
sizeof(double)*n/num,
cudaMemcpyHostToDevice);

5 GB/s (100 × 1MB)
370 MB/s (1k × 100kB)
36 MB/s (10k × 10kB)

Recommendation: Combine small data transfers into bigger ones to hide the latency
of each operation.

Massive parallelism

Amdahl’s law
Let us assume the sequential execution time is T . The fraction of the program that
is (perfectly) parallelizable is denoted by 0 ≤ s ≤ 1.

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
number of cores

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

sp
ee

du
p

s=0.5
s=0.75
s=0.9
s=0.95

Gustafson’s law
Let us assume that the total work of the sequential program is W and takes time
T to execute. The fraction of the program that is (perfectly) parallelizable is denoted
by 0 ≤ s ≤ 1.

1 2 4 8 16 32 64 128 256 512 1024
number of cores

1

2

4

8

16

32

64

128

256

512

1024

in
cr

ea
se

 in
 p

ro
bl

em
 si

ze
 fo

r f
ix

ed
 w

al
l t

im
e

s=0.5
s=0.75
s=0.9
s=1.0

Amdahl vs Gustafson

Amdahl is the pessimist.
I Even a small sequential part severely limits the speedup.
I Assumes the problem size is constant.
I Amdahl’s law talks about strong scaling (the more difficult problem).

Gustafson is the optimist.
I An arbitrary increase in the work for a given time can be achieved for any s.
I Gustafson’s law is about weak scaling (the easier problem).

Summary

Amdahl and Gustafson’s law hold for any parallel system.
I They are valid on the CPU as well as on the GPU.

But the amount of parallelism required to fully exploit GPUs is significantly
larger.
I 160 cores (5120 CUDA cores) vs 32 cores.

GPUs usually require a larger problem size to be effective.

Number of threads & number of blocks

Number of threads & number of blocks

To launch a kernel we have to specify
I number of threads per block (integer or dim3);
I number of blocks per grid (integer or dim3).

Using dim3 makes it easier to access 2d/3d structures.

All threads in a block are executed on the same streaming multiprocessor.
I These threads share L1 cache/shared memory.

On the V100 each of the (80) SM can process 64 threads in parallel.
I But we can launch up to 1024 threads per block.
I Each SM can host 2048 threads.

Oversubscription

Oversubscription is launching more threads than the hardware can support.

Oversubscription is a big no-go on CPU hardware.

GPUs are very fast at switching out threads.
I Oversubscription as a way to hide latency.

Oversubscription
__global__ void k_mult(double* x, double* y, int n) {

int i = threadIdx.x + blockDim.x*blockIdx.x;
if(i < n) y[i] = 3.0*x[i];

}
k_copy<<<n/threads_per_block, threads_per_block>>>(x, y, n);

1 2 4 8 16 32 64 128 256 512 1024
number of threads per block

101

102

103

ac
hi

ev
ed

 b
an

dw
id

th
 [G

B/
s]

achieved bandwidth
theoretical peak

Recommendation: Use at least 128 threads per block.
Recommendation: Some problems require more parallelism than CUDA cores to
obtain optimal performance.

Branches and SIMD

Avoid branch divergence

There is no explicit vectorization in CUDA, but warps are still executed in lockstep.
I Each 32 threads in a block form a warp.

The code
if(threadIdx.x % 2 == 0)

// do something
else

// do something else

is ececuted as follows
// do something (all thrads for which threadIdx.x % 2 == 0)
// do something (all threads for which threadIdx.x % 2 == 1)

Branches that diverge within a warp are serialized.
I Essentially SIMD behavior.

Measure performance

Measure performance

Modern hardware is complicated.
I Measuring performance is often key.

In principle you can use your CPU timer, but there are dragons.
WRONG!
double a = clock();
kernel<<<num_blocks,num_threads>>>(...);
cout << (clock()-a)/CLOCKS_PER_SEC << " s" << endl;

Kernel launches are asynchronous. Stops the time until control is returned to CPU.
Correct.
double a = clock();
kernel<<<num_blocks,num_threads>>>(...);
cudaDeviceSynchronize();
cout << (clock()-a)/CLOCKS_PER_SEC << " s" << endl;

Note: clock reports the CPU time not the wall time.

Measure performance

CUDA provides facilities to measure time on the GPU.
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start, 0);
// do stuff on the GPU
cudaEventRecord(stop, 0);
// kernel might still be running

cudaEventSynchronize(stop);
float time;
cudaEventElapsedTime(&time, start, stop);
cout << time*1e-3 << " s" << endl;

cudaEventDestroy(start);
cudaEventDestroy(stop);

Exercise

The provided program (exercise-efficiency.cu) solves the heat equation.

The main part of the code is repeated matrix-vector multiplication.


0 0 0 0 0 0 0
a2 a1 a2 0 0 . . . 0
0 b2 b1 b2 0 . . . 0
0 0
0 0 0
...

... 0 0 c3 c1 c2
0 0 0 0 0 0 0





u0
u1
...
...
...
...

un−1



Note: matrix is stored in memory as [a1, a2, a2, b1, b2, b2, ...].

Exercise

There are a number of performance problems. Not all of them equally consequential.
I Compare the performance of the original code to the theoretical peak performance

of the algorithm.
I Find the (many) performance issues and fix them.
I Time the different parts of your code to see where the bottleneck is.

Check that your code still produces the correct result.

Solution

Do not call cudaMemcpy for each row of the matrix.
I Create the matrix on the CPU and then copy it to the GPU with one call to

cudaMemcpy.
I Or better, create the matrix directly on the GPU.
I Or even better, eliminate the matrix altogether.

Number of threads per block is too low (only 64).

Interchange pointers instead of copying d out to d in.
I cudaMemcpy call is superfluous.

Solution

Initialize the vector on the GPU
I No need to initialize the vector on the CPU and copy it to the GPU.
I GPU is better at computing sin than the CPU.
I Relevant in practice?

Problem is still too small to obtain peak performance.
I Increase the problem size (n).

