
GPU programming in CUDA:
Advanced topics in CUDA

Lukas Einkemmer
Department of Mathematics

University of Innsbruck

PRACE Autumn School, Innsbruck
Link to slides: http://www.einkemmer.net/training.html

http://www.einkemmer.net/training.html


Shared memory



Reminder on Caches

Cache is a type of fast, but small, memory that accelerates repeated access to the
same memory location.
I Usually, i.e. on CPUs, completely transparent to the programmer.

On the GPU we can explicitly control the L1 cache.
I Shared memory.

Often essential to obtain good performance for memory bound problems.



Shared memory

The shared keyword declares a variable/array that resides in shared memory.

Such variables are shared among the threads in a block.
I No communication between blocks is possible using shared memory.



Example using shared memory
__global__ void k_stencil(double* x, double* y, int n) {

int i = threadIdx.x + blockDim.x*blockIdx.x;

// Local_x is an array in shared memory.
__shared__ double local_x[1024];

// Each thread loads its value of x into local_x that is shared
if(i < n) local_x[threadIdx.x] = x[i];

__syncthreads();

if(threadIdx.x > 0 && threadIdx.x < blockDim.x-1)
y[i] = local_x[threadIdx.x+1]-local_x[threadIdx.x-1];

else if(threadIdx.x == 0 && i > 0)
y[i] = local_x[threadIdx.x+1]-x[i-1];

else if(threadIdx.x == blockDim.x-1 && i < n-1)
y[i] = x[i+1] - local_x[threadIdx.x-1];

}



Synchronization

The syncthreads() function acts as a barrier for all threads in a block.
I Threads in different blocks are not affected.

General philosophy: Threads in the same block can synchronize and exchange data
(via shared memory).
I No synchronization between blocks in a single kernel.

Recommendation: If you need to synchronize between blocks rethink your work and
data distribution.
I You might have a problem that does not map very well to the GPU hardware.



Dynamic shared memory

What about dynamic shared memory?
__global__ void k_sum(double* x, double* out, int n) {

extern __shared__ char shared_mem[];
}

k_sum<<<num_blocks, num_threads, shared_mem_size>>>
(d_x, d_out, n);

The argument shared mem size specifies the size (in bytes) of the array shared mem.

Only one such dynamic shared memory block is allowed per kernel.



Matrix-matrix multiplication

Matrix-matrix multiplication
Ci ,j =

∑
k

Ai ,kBk,j .

A BC



Straightforward implementation

Each thread computes one element of the output matrix Ci ,j .

__global__
void matmul(long n, double* A, double* B, double* C) {

long i = blockIdx.x*blockDim.x + threadIdx.x;
long j = blockIdx.y*blockDim.y + threadIdx.y;

double val=0.0;
for(long k=0;k<n;k++)

val += A[i+k*n]*B[k+j*n];

C[i+j*n] = val;
}

On the V100 (n=8192) we obtain 2.2 TFLOPS.
I Theoretical peak of 15 TFLOPS.
I Arithmetic operations O(n3) vs memory accesses O(n2).



Better algorithm
Each block computes a submatrix.
I Data loaded once and then stored in shared memory.

A BC

m=0

m=1



Implementation

__global__
void matmul_fast(long n, float* A, float* B, float* C) {

long i = threadIdx.x; long bi = blockIdx.x;
long j = threadIdx.y; long bj = blockIdx.y;

// loop over all sub-matrices
float val = 0.0;
for(long m=0;m<n/BS;m++) {

__shared__ float block_A[BS*BS];
__shared__ float block_B[BS*BS];

// load block into shared memory
block_A[i+BS*j] = A[bi*BS+i + n*(m*BS+j)];
block_B[i+BS*j] = B[m*BS+i + n*(bj*BS+j)];

// wait until all threads have caught up
__syncthreads();



Implementation

// compute the (sub-)matrix-matrix product
for(long k=0;k<BS;k++)

val += block_A[i+BS*k]*block_B[k+BS*j];

// make sure that all threads are finished before
// next loop iteration starts.
__syncthreads();

}

// update result in global memory
C[bi*BS+i + n*(bj*BS+j)] = val;

}

On the V100 (n=8192) we obtain 4.2 TFLOPS.
I Improvement by approximately a factor of two.



Exercise

Given a vector v in GPU memory compute
∑

i vi .
I Start from exercise-advanced-einkemmer.cu.

Use shared memory to perform the sum in each block.
I Each block writes its (local) result to global memory.
I Repeat this procedure until you obtain the entire sum.

Once your code produces the correct result, time your code and report its
performance.


