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1 Introduction

The general problem we are interested in is to numerically compute the integral

I :=

ˆ
[0,1]d

f(x) dx,

where f : [0, 1]d → R and d ∈ N is large (usually d ≥ 4). As is shown in [3] classical methods of numerical
integration are ill-suited for such problems. A number of related methods that alleviates this problem are known
as Monte Carlo integration methods. Such methods can be shown to have a probabilistic error bound of order
O
(
n−1/2

)
(where n is the number of function evaluations). In this term paper we will introduce other methods of

approximating the before-mentioned integral, namely quasi-Monte Carlo methods, which are super�cial similar
to Monte Carlo methods but have certain advantages, especially for moderately sized d (e.g. d < 20).

Monte Carlo methods use a sequence of (indepenent) random numbers to determine the points at which f is
evaluated. Random numbers, however, have, e.g., the disadvantage that they exhibit clustering behavior. Quasi-
Monte Carlo methods, on the other hand, use a fully deterministic sequences that tries to �evenly covers� the unit
cube. This rather vague notion of �evenly covers� will be made more precise in the following section by the so called
discrepancy of a sequence.

The development in this term paper mainly follows [1] and [6].

2 Quasi-Monte Carlo Integration

First, let us precisely de�ne what we mean by the discrepancy of a sequence with n elements.

De�nition 2.1. (Discrepancy). Suppose E is the set of all rectangles in [0, 1]d (a rectangle is assumed to be
aligned with respect to the coordinate axes). Then, the discrepancy of the sequence x0, . . . ,xn−1 is de�ned by

Dn := sup
J∈E

∣∣∣∣#{xi ∈ J : i ∈ {0, . . . , n− 1}}
n

− volJ

∣∣∣∣ .
Surprisingly an alternative measure of discrepancy, the so called star discrepancy, will prove more useful.

De�nition 2.2. (Star discrepancy). Suppose E∗ is the set of all rectangles J in [0, 1]d such that 0 is a vertex
of the rectangle. Then, the star discrepancy of the sequence x0, . . . ,xn−1 is de�ned by

D∗n := sup
J∈E∗

∣∣∣∣#{xi ∈ J : i ∈ {0, . . . , n− 1}}
n

− volJ

∣∣∣∣ .
In addition, we need the concept of the variation of a function (in the Hardy-Krause sense). It should be noted
that this de�nition is not equivalent to the usual de�nition of variation. It di�ers in that we consider variation at
the �upper� boundary as well.
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De�nition 2.3. (Bounded variation). Suppose f : [0, 1]→ R is continuously di�erentiable. Then, the variation
of f is de�ned by

V (f) :=

ˆ 1

0

∣∣∣∣ dfdx
∣∣∣∣ dx.

Suppose f : [0, 1]d → R is a di�erentiable function. Then, the variation of f is de�ned by

V (f) :=

ˆ
[0,1]d

∣∣∣∣ ∂df(x)

∂x1 . . . ∂xd

∣∣∣∣ dx1 . . . dxd +

d∑
i=1

V (f |Ai),

where Ai = {x ∈ [0, 1]d : xi = 1}. We say a function f has bounded variation if V (f) exists and is �nite.

For numerical integration purposes the following result is of central importance.

Theorem 2.4. (Koksma-Hlawka theorem). Suppose f : [0, 1]d → R is a function of bounded variation and
(xi)

∞
i=1. Then,

|I − In| ≤ V (f)D∗n,

where

In :=
1

n

n∑
i=1

f(xi).

Proof. Suppose J ∈ E∗ (i.e. the position of one vertex is 0). Then, J is completely characterized by the antipodal
vertex, denoted by x, of the vertex 0. Therefore, we use the notation J(x). Set

R(x) :=

ˆ
J(x)

1

n

n∑
i=1

δ(y − xi)− 1 dy =
#{xi ∈ J(x) : i ∈ {1, . . . , n}}

n
− volJ.

Clearly

∂R(x)

∂x1 . . . ∂xd
=

1

n

n∑
i=1

δ(y − xi)− 1

Therefore, the following computation gives us an estimate of the approximation error.
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|I − In| =

∣∣∣∣∣
ˆ
[0,1]d

f(x) dx− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
[0,1]d

[
1− 1

n

n∑
i=1

δ(x− xi)

]
f(x) dx

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
[0,1]d

∂R(x)

∂x1 . . . ∂xd
f(x) dx

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
α∈Zd2

(−1)|α|
ˆ
[0,1]|α|

R(x)
∂|α|f(x)

∂xα
|1xα=0 dxα

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
α∈Zd2

(−1)|α|
ˆ
[0,1]|α|

R(x)
∂|α|f(x)

∂xα
|xα=1 dx

∣∣∣∣∣∣
≤

(
sup

x∈[0,1]d
R(x)

)∣∣∣∣∣∣
∑
α∈Zd2

(−1)|α|
ˆ
[0,1]|α|

∂|α|f |xα=1(x)

∂xα
dxα

∣∣∣∣∣∣
≤

(
sup

x∈[0,1]d
R(x)

) ∑
α∈Zd2

ˆ
[0,1]|α|

∣∣∣∣∂|α|f |xα=1(x)

∂xα

∣∣∣∣ dxα

=

(
sup

x∈[0,1]d
R(x)

)
V (f)

= D∗nV (f),

where we used the fact that R(x) = 0 if any component of x is 0, as well as integration by parts. Furthermore, we
used the fact that the recursive de�nition given in De�nition 2.3 can be written as

V (f) =
∑
α∈Zd2

ˆ
[0,1]|α|

∣∣∣∣∂|α|f |xα=1(x)

∂xα

∣∣∣∣ dxα.

3 Low discrepancy sequence

In the previous section we derived an error bound (Theorem 2.4) for quasi-Monte Carlo integration. Since the
variation of f is �xed for a given function our task is to �nd a sequence that minimizes D∗n. The �rst sequence we
discuss, the Van der Corput sequence, is a somewhat arti�cial example in a single dimension. However, it forms
the basis for a class of important sequences in multi-dimensional space.

Theorem 3.1. Every n ∈ N≥0 has a unique digit expansion in a base b ∈ N≥2 of the form

n =

∞∑
j=0

aj(n)bj ,

where aj(n) ∈ {0, 1, . . . , b− 1} for every j ≥ 0 and aj(n) = 0 for all su�ciently large j.

Proof. We proceed by induction. First, 0 has obviously the expansion aj(n) = 0, ∀j ∈ N≥0. Suppose we can expand
n− 1 as

n− 1 =

∞∑
j=0

aj(n− 1)bj .
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Basis i = 0 1 2 3 4 5 6 7
2 0 0.5 0.25 0.75 0.125 0.625 0.375 0.875
3 0 0.3̇ 0.6̇ 0.1̇ 0.4̇ 0.7̇ 0.2̇ 0.5̇
4 0 0.25 0.5 0.75 0.0625 0.3125 0.5625 0.8125

Table 3.1: Van der Corput sequence.

Then,

n = (1 + a0(n− 1)) +

∞∑
j=1

aj(n− 1)bj .

If 1 + a0 < b− 1 we are done. Otherwise, 1 + a0 = b and we write

n = 0 + (1 + a1(n− 1)) +

∞∑
j=2

aj(n− 1)bj .

This procedure terminates after a �nite number of steps, as desired.

De�nition 3.2. (Radical-inverse function).

φb :N≥0 → [0, 1)

n 7→
∞∑
j=0

aj(n)b−j−1

De�nition 3.3. (Van der Corput sequence). Suppose b ∈ N≥2. Then, the sequence (xi)
∞
i=0 de�ned by

xi = φb(i)

for every i ≥ 0 is called the van der Corput Sequence in base b.

Example 3.4. The �rst seven elements of the van der Corput sequence in base b = 2, 3, 4 are given in table 3.1.

The van der Corput sequence can be extended in an obvious way to a sequence in [0, 1)d.

De�nition 3.5. (Halton sequence). Suppose b1, . . . , bd ∈ N≥2. Then, the sequence (xi)
∞
i=0 de�ned by

xi =

 φb1(i)
...

φbd(i)


is called the Halton sequence in the bases b1, . . . , bd.

Obviously, for d = 1 the Halton sequence reduces to the van der Corput sequence (in base b1).

Example 3.6. A comparison between random numbers and the Halton sequence in bases 2, 3 is shown in �gure 1
and �gure 2.

Theorem 3.7. If x0, . . . ,xn−1 are the �rst n elements of the Halton sequence in the bases b1, . . . , bd, where b1, . . . , bd
are pairwise coprime. Then,

D∗n <
d

n
+

1

n

d∏
i=1

(
bi − 1

2 log bi
log n+

bi + 1

2

)
.

Therefore,

D∗n ≤ A(b1, . . . , bd)
logd n

n
+O

(
logd−1 n

n

)
with

A(b1, . . . , bd) =

d∏
i=1

bi − 1

2 log bi
.
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Figure 1: Halton sequence and random numbers (100 points each).

Figure 2: Halton sequence and random numbers (10000 points each).
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Figure 3: Halton sequence in 15 and 50 dimensions.

Proof. See e.g. [6, p. 29-31].

The question immediately arises in which way b1, . . . , bd has to be chosen such as to minimize A(b1, . . . , bd). Since
b1, . . . , bd are pairwise coprime the obvious answer is given by Colollary 3.8.

Corollary 3.8. If b1, . . . , bd is chosen such that b1 = p1, . . . , bd = pd, where pi is the i-th prime number, then

A(b1, . . . , bd) = Ad =

d∏
i=1

pi − 1

2 log pi

is the (unique) global minimum under the constraints that b1, . . . , bd are pairwise coprime.

Proof. Since
bi − 1

2 log bi

is monotonically decreasing, we must choose bi as small as possible. Given these constraints the �rst d prime
numbers are the unique choice.

It is widely believed that no sequence with better asymptotic properties (with respect to n) than the Halton sequence
can be found (see e.g. [6, p. 32]). Therefore, we make the following de�nition.

De�nition 3.9. (Low-discrepancy sequence). Suppose x0, . . . ,xn−1 are the �rst n elements of a sequence
(xi)

∞
i=0. We call (xi)

∞
i=0 a low-discrepancy sequence if

D∗n ≤ O

(
logd n

n

)
, as n→∞.

Theorem 3.10. The Halton sequence for any base b1, . . . , bd, where b1, . . . , bd are pairwise coprime, is a low-
discrepancy sequence.

Proof. Follows from 3.7.

4 The need for additional low-discrepancy sequences

The Halton sequence discussed in the previous section has a �aw that renders it, almost, useless if the number of
dimensions is large. This result can be anticipated from �gure 3. The precise statement is given by Theorem 4.1.
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Theorem 4.1. Suppose x0, . . . ,xn−1 are the �rst n elements of a Halton sequence. Then,

lim
d→∞

logAd
d log d

= 1.

Proof. The prime number theorem states that (see e.g. [5])

lim
x→∞

π(x)

x/ log x
= 1,

where π = #{p ≤ x : p prime}. Applying the logarithm we get

0 = lim
x→∞

log

(
π(x)

x/ log x

)
= lim
x→∞

log x

(
log π(x)

log x
− 1 +

log log x

log x

)
.

Therefore,

0 = lim
x→∞

(
log π(x)

log x
− 1 +

log log x

log x

)
= lim
x→∞

(
log π(x)

log x
− 1

)
,

which implies

lim
x→∞

log π(x)

log x
= 1.

Suppose pi is the i-th prime number. Then π(pi) = i. Thus, for x = pi we get

1 = lim
x→∞

x

π(x) log x
= lim
x→∞

x

π(x) log π(x)
= lim
i→∞

pi
i log i

.

This result can be applied to

lim
d→∞

logAd
d log d

= lim
d→∞

∑d
i=1 log pi−1

2 log pi

d log d
= lim
d→∞

∑d
i=1 [log(i log i− 1)− log(2 log(i log i))]

d log d
= lim
d→∞

∑d
i=1 log(i log i− 1)

d log d
,

since (for su�ciently large d)

lim
d→∞

∑d
i=1 log(2 log(i log i))

d log d
≤ lim
d→∞

d log(2 log(d log d))

d log d
= lim
d→∞

log(2 log(d log d))

log d
= 0.

In addition,

lim
d→∞

∑d
i=1 log(i log i− 1)

d log d
≤ lim
d→∞

d log(d log d)

d log d
≤ lim
d→∞

log(d1+ε)

log d
= 1 + ε,

for every ε > 0. Furthermore, since log(i log i− 1) is monotonically increasing

lim
d→∞

∑d
i=1 log(i log i− 1)

d log d
≥ lim
d→∞

∑d
i=1 log(i1−ε)

d log d
≥ lim
d→∞

´ d+1

1
(1− ε) log(x) dx

d log d

= (1− ε) lim
d→∞

d log(d+ 1) + log d− d
d log d

= 1− ε,

for every ε > 0 and su�ciently large d. Thus,

lim
d→∞

logAd
d log d

= 1,

as desired.

The previous theorem implies that Ad grows superexponentially. Therefore, for large d, the constant Ad becomes
extremely large and renders the Halton sequence unusable for most practical applications. The next section discusses
a general theory of constructing low-discrepancy sequences that tries to overcome this di�culty.
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5 General theory of low-discrepancy sequences

Now we turn to a property that de�nes a class of low-discrepancy sequences. Although rather technical at �rst
sight, the following de�nitions can be understood by thinking of a sequence that covers the space at a given degree
of �neness before moving to a higher degree.

De�nition 5.1. An interval E ⊂ [0, 1]d of the form

E =

d∏
i=1

[aib
−ei , (ai + 1)b−ei)

with ai, ei ∈ Z and ei ≥ 0, 0 ≤ ai < bei for 1 ≤ i ≤ d is called an elementary interval in base b.

De�nition 5.2. Suppose m, t ∈ Z and 0 ≤ t ≤ m. A (t,m, d)-net in base b is a set P with #(P ) = bm such that
for every elementary interval of volume bt−m it holds that #(P ∩ E) = bt.

De�nition 5.3. Suppose t ∈ Z, where t ≥ 0. A sequence (xi)
∞
i=0 is a (t, d)-sequence in base b if, for all

k ∈ Z, k ≥ 0 and m > t the set
{xi : kbm ≤ i ≤ (k + 1)bm}

is a (t,m, d)-net in base b.

Theorem 5.4. Suppose (xi)
∞
i=0 is a (t, d)-sequence in base b. Then,

D∗n ≤ Bdbt
(logN)d

N
+O

(
bt(logN)d−1

N

)
,

where

Bd =
1

d

(
b− 1

2 log b

)d
,

if either d = 2, or b = 2 and d = 3, 4. Otherwise,

Bd =
1

d!

b− 1

2bb/2c

(
bb/2c
log b

)d
.

Proof. See e.g. [6, p. 49-60].

Various methods have been proposed to construct such sequences. The most prominent being Niederreiter and
generalized Niederreiter sequences, which include many other sequences (e.g. Sobol sequences or Faure sequences)
as a special case. From the estimate in Theorem 5.4 it is obvious that sequences with a small value of t are sought.
It can be shown, e.g., that Niederreiter sequences are optimal in this regard. However, a detailed treatment is
beyond the scope of this term paper. The interested reader is referred to [6, Chap. 4.4-4.5] or [2].

6 Brownian bridge discretization

As already discussed, quasi-Monte Carlo methods o�er an improvement over Monte Carlo methods only if the
number if dimensions is moderate. We will now discuss a method to solve the heat equation (di�usion equation,
imaginary time Schrödinger equation) by using quasi-Monte Carlo methods, even though the number of dimensions
is large.

Theorem 6.1. (Feynman-Kac formula). Suppose u ∈ C1,2([0, T ]× Rd,R) is bounded and satis�es

∂u

∂t
=

1

2
∆u+ V u,

u(0, x) = f(x),

where f : Rd → R and V : Rd → R. Then

u(t, x) = E

(ˆ t

0

f(Xs)e
−
´ s
0
V (Xσ) dσ ds

)
, (1)

where Xt is a Brownian motion with E(Xt) = x.
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Proof. See e.g. [4, p. 5-7].

The Feynman-Kac formula can be stated in a way that doesn't limit its application to simple heat equations with
a di�usion term. However, for our development the theorem stated above is su�cient.

The �rst step is to approximate the integral in equation 1. The most basic method is to use a uniform grid.

De�nition 6.2. (Uniform grid discretization with m nodes).

ˆ t

0

f(Xs)e
−
´ s
0
V (Xσ) dσ ds ≈ 1

m

m∑
j=1

[
f(Yj)e

− 1
j

∑j
k=1 V (Yk)

]
,

where Y0 = x and Yj = Yj−1 +N (0,
√
t/m).

To compute the expected value in equation 1 we need to evaluate a m · d dimensional integral. For a good
approximation we choose m as large as computational constraints permit. To this integral, we could easily apply
Monte Carlo methods. However, due to the large number of dimensions usually needed in such an approximation
quasi-Monte Carlo methods would lose most of their advantage. Therefore, we use the following approximation.

De�nition 6.3. (Brownian bridge discretization with m nodes).

ˆ t

0

f(Xs)e
−
´ s
0
V (Xσ) dσ ds ≈ 1

m

m∑
j=1

[
f(Yj)e

− 1
j

∑j
k=1 V (Yk)

]
.

Suppose m = 2l for l ∈ N≥1. Given Y0 = x and Ym = x+N (0,
√
t) we use the following construction

Ym/2 =
1

2
Y0 +

1

2
Ym +N (0,

√
a ·m/2),

Ym/4 =
1

2
Y0 +

1

2
Ym/2 +N (0,

√
a ·m/4),

Y3m/4 =
1

2
Ym/2 +

1

2
Ym +N (0,

√
a ·m/4).

Similar constructions are possible for m 6= 2l (See e.g. [1, p. 39]).

For Monte Carlo methods the above discretization doesn't change the error bound since the overall variance is
still the same. However, in the Brownian bridge discretization the large time steps are �lled in �rst, resulting in a
number of dimensions with large variance and a number of dimensions with smaller variance. The basic idea is to
use quasi-Monte Carlo integration on say the �rst 10 dimensions, which have large variance. In this case the error
scales close to O(n−1). For the remaining dimensions Monte Carlo integration is employed. In this case the error
scales as O(n−1/2).
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