
Linear Algebra

Vector spaces

A vector space over a �eld F (F, V, V ×V → V, F ×V → V ) is a set V together
with a function V × V → V, (x,y) 7→ x+ y (called addition) and a function
F × V → V, (c,x) 7→ cx (called scalar multiplication) for which

∀x,y ∈ V : x+ y = y + x commutativity
∀x,y,z ∈ V : (x + y) + z = x+ (y + z) associativity

∃0 ∈ V ∀x ∈ V : 0+ x = x additive identity
∀x ∈ V ∃ − x ∈ V : (−x) + x = 0 additive inverse
∀c ∈ F∀x,y ∈ V : c(x+ y) = cx+ cy distributivity
∀c, d ∈ F∀x ∈ V : (c+ d)x = cx+ dx distributivity
∀c, d ∈ F∀x ∈ V : (cd)x = c(dx) associativity

∀x ∈ V : 1x = x scalar identity
Closure is implied by this axioms.

A subset W of a vector space V is a subspace i� it is a vector space with the
same vector space operations as V .

W ⊂ V is a subspace i�
0 ∈W
∀x,y ∈W∀c ∈ F : x+ y ∈W ∧ cx ∈W closure

Linear combination & Bases

A linear combination is a �nite sum (even in in�nite dimensional vector
spaces) given by

Lin(S, c1, . . . , cn) =
∑
v∈S

civ S ⊂ V, ci ∈ F

Lin(∅) = 0

The span of vectors in S ⊂ V is the set of all linear combinations
Span(S) = {Lin(S, c1, . . . , cn) | c1, . . . , cn ∈ F}

A set of vectors S is linearly independent i�
Lin(S, c1, . . . , cn) = 0 ⇐⇒ c1, . . . , cn = 0

A set of vectors B ⊂ V in a vector space V is called a basis i�
• B is linearly independent
• Span(B) = V

Every vector space has a basis.

We call (ei)j = δij , i = 1, . . . , n the standard basis of Fn.

We call dim(V ) = #(B) the dimension of V . The dimension (and thus the
number of vectors in a basis) is unique for every vector space.

There are at most dim(V ) linearily independent vectors in V .

Linear functions

A linear function (or linear transformation) is a function T : V → W such
that

T (x+ y) = T (x) + T (y)
T (cx) = cT (x)

The set of all linear functions T : V → W (denoted by L(V,W ) ) is a vector
space.

dimV = n, dimW = m and BV ,BW is a basis of V,W then there exists a
unique matrix A ∈ Fm×n such that T (v) = Av.

Properties that are independent of the chosen basis (such as trace, determinant
or eigenvalues) are assigned to the function represented by the matrices.

Two matrices A,B ∈ Fm×n are equivalent i�
∃P ∈ GLm(F ), Q ∈ GLn(K) : B = PAQ or
rg(A) = rg(B) or
i� A,B represent the same functions T : V →W regarding di�erent bases.

Two matrices A,B ∈ Fn×n are similar i�
∃T ∈ GLn(K) : B = T−1AT or
i� A,B represent the same function f : V → V regarding di�erent bases.

The kernel of a linear function is de�ned by ker(T ) = {x ∈ V | f(x) = 0W }.

The image/range of a linear function is de�ned by
im(T ) = range(T ) = {f(x)| x ∈ V }.

Matrices

A m× n matrix A ∈ Fm×n over F is a function (usually written as
a rectangular grid)

A : {1, . . . ,m} × {1, . . . , n} → F, (i, j) 7→ Aij

A matrix A is square i� m = n. Then we call n the size of A.

Equality, addition, and scalar multiplication is de�ned
component-wise.

The vectors in Fn are usually identi�ed with the matrices in
Fn×1(thus are column vectors).

Identity matrix (In)ij = δij . It holds that InA = AIn = A.

Special matrices
∀i 6= j : Aij = 0 diagonal matrix
∀i > j : Aij = 0 upper triangular matrix
∀i < j : Aij = 0 lower triangular matrix

A,B ∈ Fn×n and upper (lower) triangular
=⇒ AB is upper (lower) triangular

An elementary matrix is an invertible square matrix obtained by
• A multiple of one row of In is added to a di�erent row
• Two di�erent rows of In are exchanged
• One row of In is multiplied by a nonzero scalar

Matrix multiplication

A ∈ Fm×n,B ∈ Fn×p
(AB)ij ∈ Fm×p =

∑n
k=1 AikBkj

Matrix multiplication is associative and distributive over matrix ad-
dition (from the left and from the right) but not commutative.

Transpose of a matrix

A ∈ Fm×n
(AT )ij ∈ Fn×m = Aji

(AT )T = A
(A+B)T = AT +BT

(cA)T = cAT

(AB)T = BTAT

Rank of a matrix

The range of a matrix is the vector space spanned by the columns
(also called the column space).

The rank of a matrix (denoted by rankA) is the number of inde-
pendent columns of A (This is equivalent to the number of linearly
independent rows of A.
Equivalently: rankA = dim(range(A))

rankA = 0 ⇐⇒ A = 0
rank(A+B) ≤ rankA+ rankB

rank(AB) ≤ min(rankA, rankB)
rank(ATA) = rank(AAT ) = rank(A)

I� F = C we call A∗ = A
T
the Hermitian adjoint.

We call a square matrix symmetric i� AT = A and skew-
symmetric i� AT = −A.

We call a square matrix hermitian i� A∗ = A and skew-hermitian
i� A∗ = −A.

Permutations

A permutation is a bijective function σ : S → S where S is a �nite set. We write e.g.

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
A cycle is a permutation such that ∃a1, . . . , ak ∈ S : f(ai) = ai+1 ∧ f(ak) = a1. Every permutation can be written as a product of cycles.
A cycle of length two is called a transposition. Every cycle can be written as a product (combination) of transpositions.

The sign of a permutation is de�ned by sgn(σ) =

{
1 n even

−1 n odd
(where n is the number of transposition in the decomposition of the permutation)



Determinant of a (square) matrix

detA =
∑

σ∈Sn

sgn(σ)
∏n
i=1 Ai,σ(i)

Rule of Sarrus

detA =

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc

detA =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− ceg − bdi− afh

Laplace expansion

detA =
∑n
j=1 Aij(−1)i+jM ij

M ij is the ij−th minor (row i and column j are removed from A).

Determinant by Gaussian Elimination
• Exchange of a row/column changes the sign of the determinant
• Multiplying a row/column by c multiplies the determinant by c
• Adding a multiple of a row/column to another leaves the

determinant unchangend

then use: If A is a triangular matrix then detA =
n∑
i=1

aii.

det(AB) = detAdetB
det(cA) = cn det(A)

det(A−1) = det(A)−1

det(AT ) = det(A)

det(A∗) = det(A)
detA = λ1 · . . . · λn n× n matrices

Trace of a (square) matrix

trA ∈ F =
∑n
k=1 Akk

tr(A+B) = trA+ trB
tr(rB) = r · trA
tr(A) = tr(AT )
tr(AB) = tr(BA)
tr(ABC) = tr(CAB) = tr(BCA) cyclic permutation
tr(A) = λ1 + · · ·+ λn n× n matrix

System of linear equations

A matrix A is in row echelon form (REF) i�
• All nonzero rows are above any rows of all zeroes
• The leading coe�cient (called pivot) of a row is always strictly

to the right of the leading coe�cient of the row above it.

A matrix A is in reduced row echelon form (RREF) i� addition-
ally
• The leading entry in every row is 1 and every other

entry of that column is 0

Elementary row operation on a matrix are left multiplications
with elementary matrices. Thus
• Add a multiple of one row to a di�erent row
• Exchange two di�erent rows
• Multiply one row by a nonzero scalar

Gaussian Elimination is the algorithm that transforms a matrix
by applying elementary row operations to a matrix in REF.
Gauss-Jordan Elimination is the algorithm that transforms a ma-
trix by applying elementary row operations to a matrix in RREF.

Every system of linear equations can be converted to matrix-
vector form
a11x1 + · · ·+ a1nxn = b1
a21x1 + · · ·+ a2nxn = b2 −→

...
am1x1 + · · ·+ amnxn = bm

Ax = b

A =

 a11 . . . a1n
...

. . .
...

am1 . . . amn


b = [b1 . . . bm]T

x = [x1 . . . xn]
T

The system of linear equations can be solved by applying Gauss-
Jordan elimination to the augmented matrix A|b ∈ Fm×(n+1).

The solution of a system of linear equations forms an a�ne space
which can be written as z + span(s1, . . . , sk) where z is an arbitrary
solution and s1, . . . , sk is a basis of the homogenous solution space
where k = rank(A).

span(s1, . . . , sk) = {x| Ax = 0}

Inverse matrix

A matrix A ∈ Fn×n is called invertible or nonsingular i�
∃B ∈ Fn×n : AB = BA = In We write A−1 = B.

A matrix A is invertible i� detA 6= 0.
A matrix A is invertible i� 0 6∈ σ(A).

The group of all invertible n×nMatrices over F is denoted by GLn(F ) and is

called the general linear group (for n ≥ 2, GLn(F ) is not commutative).

(AB)−1 = B−1A−1

A =

[
a11 a12
a21 a22

]
=⇒ A−1 = 1

detA

[
a22 −a12
−a21 a11

]
-

Inversion by Gauss-Jordan Elimination
Use Gauss-Jordan Elimination to transform the augmented matrix [A|In] to
[InB] then B = A−1.

Eigenvalues & Eigenvectors

λ ∈ F is an eigenvalue to the eigenvector x 6= 0 ∈ Fn of the Matrix
A ∈ Fn×n i� Ax = λx.

The set of all eigenvectors (also called the spectrum) is denoted by σ(A) =
{λ|Ax = λx, x 6= 0}

The eigenspace to the eigenvector λ is a vector space and denoted by
Eλ(A) = {x| Ax = λx, x 6= 0}

The characteristic polynomial of A is given by pA(z) = det(zIn −A) =
det(A− zIn).

σ(A) = {z ∈ F | pA(z) = 0}

The (algebraic) multiplicity α(λ) is the number of times the eigenvalue
occurs as a root in pA(z). We call the eigenvalue simple i� α(λ) = 1.

The (geometric) multiplicity γ(λ) = dim (Eλ(A))

We call the matrix A nonderogatory i� ∀λ ∈ σ(A) : γ(λ) = 1.

Properties of eigenvalues & eigenvectors

If A is a triangular matrix σ(A) = {a11, . . . , ann}.

σ(A) = σ(AT ) the multiplicities are also the same
λ ∈ σ(A) ⇐⇒ λ−1 ∈ σ(A−1)

Diagonalization

A matrix A ∈ Cn×n is diagonalizable i� it is similar to a diagonal matrix;
thus, ∃P ∈ GLn(C) : P−1AP is a diagonal matrix.

A matrix A ∈ Cn×n is diagonalizable i� the sum of the dimensions of its
eigenspaces is equal to n.

If a matrix A has n distinct eigenvalues, then A is diagonalizable.

To �nd a matrix P such that P−1AP is a diagonal matrix we
• Find bases xi1, . . . ,xiri for Eλi

(A) for each of the distinct eigenvalues
λ1, . . . , λk of A

• P = [x11 . . .x1r1 . . .xk1 . . .xkrk ]

Properties of diagonalizability
A diagonalizable =⇒ AT ,A−1,Ak k ∈ N are diagonalizable

Cramer's rule

A system of linear equations has a unique solution i� A is invertible. In
this case

xi =
detB(i)
detA

where B(i) is the matrix that is formed by replacing the i-th column of

A by b.


