
Di�erentiation

Derivative

f ′(a) = lim
h→0

f(a+h)−f(a)
h

Total derivative

f ∈ U ⊂ Rn → Rm, L ∈ Rm×n

f ′(a) := L⇐⇒ lim
a→x

||f(x)−f(a)−L(x−a)||
||x−a|| = 0

We then call L the Jacobian matrix and usually de-
note it by f ′(a).

In the one dimensional case no distinction has to be
made between the total derivative and the derivative.

Notation

f ∈ C f is continuous in Rn
f ∈ C(S) f is continuous in S
f ∈ C f is di�erentiable on Rn
f ∈ C(S) f is di�erentiable on S
f ∈ CT f is total di�erentiable on Rn
f ∈ CT (S) f is total di�erentiable on S
f ∈ CP f is partial di�erentiable on Rn
f ∈ CP (S) f is partial di�erentiable on S
f ∈ C1 f is continuously di�erentiable on Rn
f ∈ C1(S) f is continuously di�erentiable on S

We use Cn to denote an n-times di�erentiable function.

Note that f ∈ C and f ∈ C(S) is only used in the one

dimensional case.

Elementary functions

f(x) → d
dx
f(x)

c → 0
cx → c

xc → cxc−1 c > 0
|x| → signx x 6= 0

cx → cx log c c > 0

logc x → 1
x log c

c > 0, c 6= 1

1
x
→ −1

x2
x 6= 0

1
xc

→ −c
xc+1 x 6= 0√

x → 1
2
√
x

x > 0

ex → ex

ln |x| → 1
x

xx → xx(log x+ 1)

(fg)′ → fg(g′ ln f + g
f
f ′)

Hyperbolic functions

f(x) → d
dx
f(x)

sinhx → coshx
coshx → sinhx

tanhx → − tanh2 x+ 1 = 1
cosh2 x

cothx → − coth2 x+ 1 = −1
sinh x

arsinhx → 1√
x2+1

arcoshx → 1√
x2−1

artanhx → 1
1−x2

arcothx → 1
1−x2

cschx = 1
sinh x

→ − cosh x
sinh2 x

sechx = 1
cosh x

→ − sinh x
cosh2 x

Trigonometric functions

f(x) → d
dx
f(x)

sinx → cosx
cosx → − sinx

tanx → tan2 x+ 1 = 1
cos2 x

cotx → − cot2 x− 1 = −1
sin2 x

arcsinx → 1√
1−x2

arccosx → −1√
1−x2

arctanx → 1
1+x2

arccotx → −1
1+x2

cscx = 1
sin x

→ − cos x
sin2 x

secx = 1
cos x

→ sin x
cos2 x

Single variable rules

(cf)′ = cf ′ Linearity 1
(f ± g)′ = f ′ ± g′ Linearity 2

(fg)′ = f ′g + fg′ Product rule(
f
g

)′
= f ′g−fg′

g2
Quotient rule(

1
f

)′
= −f ′

f2
Reciprocal rule

(f ◦ g)′ = (f ′ ◦ g) · g′ Chain rule

(f−1)′ = 1
f ′◦f−1 Inverse function rule

Mean value theorem

f ∈ C([a, b]) ∧ f ∈ C((a, b)) =⇒
∃c ∈ (a, b) : f ′(c) = f(b)−f(a)

b−a

Logarithmic derivative

(ln f)′ = f ′

f

Real-valued functions

f : D ⊂ Rn → R where D is open.
x : I ⊂ R→ Rn

Partial derivative
∂f
∂x

= ∂xf all variables except x

are considered to be constants

If all partial derivates exist we call the function partial
di�erentiable.

f ∈ CP (D) 6=⇒ f ∈ C1(D)
f ∈ CT (D) ⇐= f ∈ C1(D)

f ∈ CT (D) =⇒ f ′ = [∂x1f ∂x2f . . . ]

Schwarz's theorem

f ∈ C2(D) =⇒ ∂2f
∂xy

= ∂2f
∂yx

Chain rule

f ∈ C1(D), x ∈ C(I) =⇒
d
dt
f(x(t)) = f ′(x(t)) · ẋ(t) =

n∑
i=1

∂f
∂xi

(x(t)) · ẋi(t)

Mean value theorem

f ∈ C1(D) =⇒
∃θ ∈ (0, 1) : f(x)− f(a) = f ′(a+ θ(x− a))(x− a)

Directional derivative

∂vf = 〈∇f,v〉

Vector-valued functions

f : B ⊂ Rl → Rm
g : D ⊂ Rn → Rl

Jacobian matrix

If f ∈ C1(B)

f '=


∂x1f1 . . . ∂xnf1

...
. . .

...
∂x1fm . . . ∂xnfm


Chain rule

f ∈ C1(B), g ∈ CP (D) =⇒
(f ◦ g)′ = (f ′ ◦ g) · g′

from that

∂tf(x(t), y(t)) = ∂xf · ∂tx+ ∂yf · ∂ty

Mean value theorem

f ∈ C1(B) =⇒
∃θi ∈ (0, 1) : fi(x)− fi(a) =

f ′i(a+ θi(x− a))(x− a)

Inverse function rule

f : D ⊂ Rn → Rn
D open ∧ f ∈ C1 ∧ ∃f−1

=⇒ (f−1)′(y) = [f ′(f−1(y))]−1

Gradient, Curl, Divergence

∇f =


∂x1f
...

∂xnf

 = (f ′)T

curlf = ∇× f

divf = 〈∇,f〉

Hessian matrix

Hf =


∂2f

∂x21
. . . ∂2f

∂xnx1

...
. . .

...
∂2f
∂x1xn

. . . ∂2f
∂x2n


in the two dimensional case

Hf =

[
∂xxf ∂yxf
∂xyf ∂yyf

]



Applications of Di�erentiation

L'Hôpital's rule

lim
x→a

f(x) = lim
x→a

g(x) = 0 ∨
lim
x→a

f(x) = lim
x→a

g(x) = ±∞ =⇒

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

Monotonicity

f ∈ C1
f ′ ≥ 0 ⇐⇒ monotonically increasing
f ′ ≤ 0 ⇐⇒ monotonically decreasing
f ′ > 0 =⇒ strictly increasing
f ′ < 0 =⇒ strictly decreasing

Newton's method

A zero (root) of f can be computed by (if x0
is choosen near a zero)

f ′(xn) 6= 0 =⇒
xn+1 = xn − f(xn)

f ′(xn)

Newton's method (multivariate)

f ′(xn)(xn+1 − xn) = −f(xn)

Implicit function theorem

f : D ⊂ Rn+m → Rm, (x,y) 7→ f(x,y)

f ∈ C1 ∧ D open

f ′ = [ ∂f
∂x

∂f
∂y

]

If

f(a, b) = 0 ∧ det
∂f

∂y
(a, b) 6= 0

Then there exists an open neighbourhood
U ⊂ Rn+m of (a, b) such that there exits a
function g : R → Rm which describes the so-
lutions of f(a, b) = 0 in U .

Linear approximation (tangent) at a

f ∈ C1 =⇒
f(x) ≈ f(a) + f ′(a) · (x− a)

Approximation by a polynomial of degree n at a

f ∈ Cn+1(I) ∧ x, a ∈ I =⇒

f(x) =
n∑
k=0

f(k)(a)
k!

+Rn+1(x, a)

Rn+1(x, a) =
1
n!

´ x
a (x− t)nf (n+1)(t) dt Remainder

(Lagrange form)

Rn+1(x, a) =
f(n+1)(ξ)
(n+1)!

(x− a)n−1 Remainder

(Cauchy form)
ξ ∈ (x, a) ∨ ξ ∈ (a, x)

We often don't know the remainder explicitely; However we
can bound it by O(xn+1).

Taylor series (of f at a)

f ∈ C∞ =⇒

T (x, a, f) =
∞∑
k=0

f(k)(a)
k!

(x− a)k

Taylor's theorem

lim
n→∞

Rn(x) = 0⇐⇒
f(x) = T (x, a, f)

In this case the function at x is

equal to its taylor series.

Multivariate approximation
T1(x,a) = f(a) + f ′(a)(x− a)

T2(x,a) = f(a) + f ′(a)(x− a)

+ (x− a)THf (a)(x− a)

Multivariate Taylor series

(Df(a)) (·) := 〈∇f, (·)〉

T (x,a, f) =
∞∑
n=0

1

n!
Dnf(a) (x− a, . . . ,x− a)

The Taylor series is generalized com-
ponentwise to vector-valued func-
tions.

Single variable Extrema

f : [a, b]→ R
∃r∀x : |x− c| < r =⇒ f(x) < f(c) local

minima

We call a, b and all points c ∈ [a, b] where f isn't
di�erentiable or where f ′(x) = 0 a critical point.

Fermat's theorem

c extrema =⇒ c critical point

First derivative test

If f ′ changes sign at c, f has an extremum at c.
If the sign changes from + to − the function has
a maximum at c.

Second derivative test

f ′′(c) < 0 =⇒ f has a maxima at c
f ′′(c) > 0 =⇒ f has a minima at c
f ′′(c) = 0 =⇒ the test is inconclusive

Existence theorem
f ∈ C1([a, b]) ∧ f ∈ C((a, b))

=⇒ f has a maxima and minima on [a, b]

Multivariable Extrema

f : D ⊂ Rn → R
f ∈ CP ∧ D open
∃r∀x : ||x− c|| < r =⇒ f(x) < f(c) local

minima

f has a critical point at c i� ∇f(c) = 0.

Second derivative test

Hf (c) positive de�nite =⇒ minima
Hf (c) negative de�nite =⇒ maxima
Hf (c) inde�nit =⇒ no extremum

De�niteness

H1 = a11 H2 =

[
a11 a12
a21 a22

]
. . . Hn = A

A positive de�nite ⇐= ∀i : detHi > 0
A negative de�nite ⇐= ∀i : sgn(detHi)

= (−1)i

Extrema with constraints

f : Rn → R
gk : Rn → R
1 < k < m ∧ f ∈ CP ∧ D open

The maxima of f under the constraints of
g1, g2, · · · = 0.

First Method

[g(x, y) = 0⇐⇒ y = h(x)]
=⇒ f(x, h(x))′ = 0

Second method

{(x, g(x, y))|g(x, y) = 0} = {(x(t), y(t)), t ∈ R)
=⇒ f(x(t), y(t))′ = 0

Lagrange multipliers

L(x1, . . . , xn, λ1 . . . λm) = f +
m∑
i=1

λigi

Then the extrema are given by

∇L = 0

Zeroes of the gradient
∇(uv) = u · ∇v + v · ∇u

u, v linearily independent =⇒ u = 0 ∧ v = 0
u, v linearily dependent =⇒ equation with

fewer variables
Linear dependence in the 2D case is determined by
det[∇v ∇u] = 0.

Elementary taylor series
1

1−x =
∑
n≥0

xn |x| < 1

xm

1−x =
∑
n≥m

xn |x| < 1, m ∈ N≥0

x
(1−x)2 =

∑
n≥1

nxn |x| < 1

(1 + x)z =
∑
n≥0

(z
n

)
· xn |x| < 1, z ∈ C

√
1 + x =

∑
n≥0

(−1)n(2n)!

(1−2n)n!24n
xn

ex =
∑
n≥0

xn

n!

log(1− x) = −
∑
n≥1

xn

n
|x| < 1

Hyperbolic/Trigonometric taylor series

sinx =
∑
n≥0

(−1)n

(2n+1)!
x2n+1

cosx =
∑
n≥0

(−1)n

(2n)!
x2n

tanx =
∑
n≥1

B2n(−4)n(1−4)n

(2n)!
x2n−1 |x| < π

2

arcsinx =
∑
n≥0

(2n)!

4nn!2(2n+1)
x2n+1 |x| ≤ 1

arccosx = π
2
− arcsinx

arctanx =
∑
n≥0

(−1)n

(2n+1)
x2n+1 |x| ≤ 1

secx =
∑
n≥0

(−1)nE2n
(2n)!

x2n

W0(x) =
∑
n≥1

(−n)n−1

n!
xn |x| < 1

e

The taylor series of sinh/cosh/tanh can be formed by removing (−1)n from the formulas
of sin/cos/tan; The taylor series holds for R, R, and |x| < π/2 respectively. The for-
mulas of arcsinh/arccosh/arctanh can be formed by adding (−1)n to the formulas for
arcsin/arccos/arctan; They hold for |x| < 1.

Bn are the Bernoulli numbers. En are the Euler numbers.


