Differentiation

Derivative
/ _ i flath)—f(a)
= ]im Lleth)—r(a)
f(a) PR h
Total derivative
feUCR - R™, L[ eRMXn

f’(a) = [ <= lim [If(z)—f(a)—L(z—a)|| =0

a—x llz—all
We then call L the Jacobian matrix and usually de-
note it by f/(a).

In the one dimensional case no distinction has to be
made between the total derivative and the derivative.

Notation

fec
fec(s)
fec
fees)
fedr
fecp(s)
fecp
feep(s)
fect
feck(s)

‘We use €™ to denote an n-times differentiable function.

f is continuous in R"

f is continuous in S

f is differentiable on R™

f is differentiable on S

f is total differentiable on R"™

f is total differentiable on S

f is partial differentiable on R™

f is partial differentiable on S

f is continuously differentiable on R™
f is continuously differentiable on S

Note that f € € and f € €(S) is only used in the one

dimensional case.

Elementary functions

d
f@) = Lf)
c — 0
ct — ¢
x¢ = cxcTl c>0
|| — signz x#0
c® = cTloge c>0
1
log.z — TToge c>0,c#1
% — ;—21 z#0
zic - o z#0
Ve = 5= x>0
er = €eF
Injz| — %
z* = z%(logz+1)
—

(r9y

Hyperbolic functions

d
flx) — L f()
sinhz — coshx
coshx — sinhzx
tanhz — —tanh®’z+4+1= $
cothz — —coth?z+1=_—"—
. 1 sinh x
arsinhx —
V241
arcoshr — 1
x2—1
artanhz — L =
1—x
arcothr — L
1—x
_ 1 — cosh x
cschx = sinlhz - sinh?2 z
_ — sinh z
sechz = cosh - cosh? z

Trigonometric functions

d
flx) — L f(z)
sinz — cosz
cosr — —sinz
tanz — tan’z+1= 12
2 cos _.1'1
cotr — —cot‘z—1=—-=
. 1 sin< T
arcsinz —
V1-x2
arccosx — =
1—a2
arctanx — L
1+%2
arccotr  — 7 T2
cscr = —+ — =T
bllil xT sin< x
secr = —— — 2Oz
cos T cos“< T

Single variable rules

(e = cf Linearity 1
(fxg) = f£¢ Linearity 2
(fg)/' = flg+fg Product rule
(%) = f,gg;fg, Quotient rule
’ _ , )
(%) = ffé Reciprocal rule
(fog) = (flog) g Chain rule
(=Y = # Inverse function rule

Mean value theorem
fec(la, b)) Af€(ab) =
Je € (a,b) : f'(e) = LY=L

a

Logarithmic derivative

njy = 4

Real-valued functions

f:D CR"™ — R where D is open.
z:ICR—-R"

Partial derivative

% =0 f all variables except x

are considered to be constants

If all partial derivates exist we call the function partial

differentiable.
feepD) #= fec'(D)
feer(D) «— fecy(D)

feer(D) = f =[0xf Osaf ...]
Schwarz’s theorem

fecip) — ZL_21
Chain rule (

fecl(D), zee(l) =

L i) = f@®) &) = > 2 (@(n) - #:(1)

i=1

Mean value theorem
fecl(D) =

30 €(0,1) : f(z) - fla) = f'(a+0(z —a))(z—a)

Directional derivative

Ouf = <Vf,'u>

Vector-valued functions
f:BCRl - R™
g:DCR" - R!

Jacobian matrix

If fec(B)
0z f1 Oz, f1
=1 :
Oy fm Oy, fm

Chain rule
feci(B),geep(D) =
(fog)=(f'og) g

from that

O f(x(t),y(t)) = Ouf - Orx 4+ Oy f - Ory
Mean value theorem
feci(B) =
30; € (0,1) : fi(z) — fi(a) =
fila+0i(x—a))(z—a)
Inverse function rule
f:DCR"—=R"
Dopen A fecC' A 3f1
==y’

Gradient, Curl, Divergence

Ouy f
A o ="
8wnf
curlf = VXf
divf = (V,f)
Hessian matrix
[ a2’r o2 f
ox? T dxpy
Hy = )
0% 2°f
L OxT1Tn T az%

in the two dimensional case

[ 8:C’E.f a1’tf:|
Hi = Y
F= Ouyf  Oyuf




Applications of Differentiation

L’Hopital’s rule Newton’s method Implicit function theorem
zll_{naf(ﬂﬁ) = zh_r)nag(ac) =0 Y A zero (root) of f can be computed by (if zg f:DCRY ™ 5 R™ (z,y) — f(z,y)
; — 1 _ is choosen near a zero) fec' A Dopen
l1m f(;v) hm g(a:) +oo = T, ﬂ}
f(it)f f() f($7L)7£0:> ox Oy
hm hm
z—a 9(T) z—a 9’ (z) T _ f(xn) 1f
n+l = Tn 7 (zn)
Monotonicity
Newton’s method (multivariate) of
fecl f(a,b)=0 A detaf(a,b)#o
f'>0 <= monotonically increasing I (@n)(Tnt1 — Tn) = —f(xn) Y
<0 <= monotonically decreasing Then there exists an open neighbourhood
f'>0 = strictly increasing U C R*™ of (a,b) such that there exits a
ff<0 = strictly decreasing function g : R — R" which describes the so-
lutions of f(a,b) =0 in U.

Linear approximation (tangent) at a

fecl =
f(@) =~ f(a) + f'(a) - (z — a)

Approximation by a polynomial of degree n at a

fecrti(DAzacl =

(k) (g

f@) =% L@ 4 Ryya(z,a)

Rosr(aa) = = L [Z(@ — )m O F(1) dt
(n+1)

Rnti(z,a) = f(Tl)(F)(x — (;L)"*1

(Cauchy form)

£€(z,a)VEE (a,x)

We often don’t know the remainder explicitely; However we

can bound it by O(z"*1).

Remainder
(Lagrange form)

Remainder

Taylor series (of f at a)
fec*® =
0 (k)
T@a f)= 3 @ - ot

Taylor’s theorem

lim Ry(z) =0 <=

n—r o0

f(@) =T(z,a, f)
In this case the function at x is
equal to its taylor series.

Multivariate approximation
T (CB, a’) =
Ta(z,a) =

fla) + f'(a)(x — a)
fla)+ f(a)(x — a)
+ (z—a)"Hs(a)(x —a)

Multivariate Taylor series

(Df(a)) (-) =V 1, ()
T(x,a,f)= Z%D"f(a) (x L, —a)
n=0 "

The Taylor series is generalized com-
ponentwise to vector-valued func-
tions.

Single variable Extrema
fila,b] > R

vz : |z —cl<r= f(z) < f(c) local

minima
We call a,b and all points ¢ € [a,b] where f isn’t
differentiable or where f’(z) = 0 a critical point.

Fermat’s theorem

c extrema = c critical point

Multivariable Extrema

f:DCR" >R

fe€cCp A D open

IvVe : ||z —c|]| <r = f(z) < f(c) local
minima
f has a critical point at ¢ iff Vf(c) = 0.

Second derivative test
—> minima
= maxima

Hy(c) positive definite
H(c) negative definite

Extrema with constraints
f:R* 5> R
gr : R" - R
l1<k<m A fe€p A Dopen
The maxima of f under the constraints of
91,92, -+ =0.
First Method

[9(z,y) = 0 <=y = h(z))
= f(z,h(z)) =0

First derivative test Hy(c) indefinit =—> 1no extremum Second method
! H .
If f ch.anges sign at c, f has an extremur.n at c. Definiteness {(x7g(x,y))|g(1’,y) — 0} — {(i(t),y(t)),t c R)
If the sign changes from + to — the function has a1 ais = f(z(t),y(t)) =0
a maximum at c. Hy=a11 Hz= [ ] H,=A ’
s d derivati a21  a22 Lagrange multipliers
e/c/on erivative test _ A positive definite <= Vi : det H; >0 N o
f//(c) <0 = fhasa maxima at ¢ A negative definite <= Vi : sgn(det H;) L(z1,...,Tn, A1 Am) =+ igl igi
f’(¢)>0 = fhasa minima at ¢ = (-1)* Then the extrema are given by
f"(¢c) =0 = the test is inconclusive
VL=0
Existence theorem
fectab]) A fe€((ab)
—> f has a maxima and minima on [a, b]
Zeroes of the gradient Hyperbolic/Trigonometric taylor series
V(w) = u-Vuo+v-Vu TS
. _ +1
u, v linearily independent =— wu=0 A v=0 smeo = E @ntD1? "
u, v linearily dependent —- equation with _ (=)™
fewer variables cosT = Z (2n)’ @?
Linear dependence in the 2D case is determined by tane = — Bgn( 42) (|1 9" 2n-1 |z| < g
det[Vo V] = 0. S (@n)!
arcsinz = nz WIQ"J” el <1
Elementary taylor series arccosx = % arcs)m:p
— _ —1 2n+1
2 = ngox |z| <1 arctanz = Z Gnin T [z} <1
f_mT = > lz] <1, m € Nxg secx = Z (D" Ban E2" x2n
. n>m - n>0 Ten)
T — n 1 n—1
(-a) nglm o] < Wo(z) = gl%w" 2| < ¢
(1+2° = ¥ (3)-an ol <1, zeC =
n>0 N ' The taylor series of sinh/cosh/tanh can be formed by removing (—1)" from the formulas
Vi+tz = Z é?ﬂ%x of sin/cos/tan; The taylor series holds for R, R, and |z| < 7/2 respectively. The for-
o mulas of arcsinh/arccosh/arctanh can be formed by adding (—1)" to the formulas for
e’ = %:0 nl arcsin/arccos/arctan; They hold for |z| < 1.
n> .
log(l—z) = ) % |z < 1 B, are the Bernoulli numbers. F,, are the Euler numbers.
n>1




